
A C TO RTL ALGORITHM USING STRUCTURED CIRCUIT TEMPLATES: A

CASE STUDY WITH SIMULATED ANNEALING

by

Jonathan D. Phillips

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Dr. Aravind Dasu Dr. Brandon Eames
Major Professor Committee Member

Dr. Nicholas Flann Dr. Stephen Allan
Committee Member Committee Member

Dr. Charles Swenson Dr. Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2008

ii

Copyright c© Jonathan D. Phillips 2008

All Rights Reserved

iii

Abstract

A C to RTL Algorithm Using Structured Circuit Templates: A Case Study with

Simulated Annealing

by

Jonathan D. Phillips, Doctor of Philosophy

Utah State University, 2008

Major Professor: Dr. Aravind Dasu
Department: Electrical and Computer Engineering

A tool flow is presented for deriving accelerator circuits on an FPGA from ANSI C source

code by exploring architecture solutions that conform to a preset template through schedul-

ing and mapping algorithms. A case study carried out on simulated annealing-based AMPS

software used for spacecraft systems is explained. The goal of the tool is the derivation of a

design that maximizes throughput while minimizing footprint. Results obtained are com-

pared with a peer C to RTL tool, a space-borne embedded processor and a commodity

desktop processor for a variety of problems.

(127 pages)

iv

Contents

Page

Abstract . iii

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Motivation . 1
1.2 Principal Contributions . 2
1.3 Overview . 2

2 Background . 3
2.1 FPGAs . 3
2.2 C-to-Hardware Compilers . 4
2.3 High Level Synthesis Techniques . 9
2.4 Iterative Repair and Simulated Annealing 13
2.5 FPGAs in the Space Environment . 23

3 Identifying a Hardware Template . 25
3.1 The Memory Sub-System, Data-Routing Module, and Main Controller . . . 26
3.2 The Copy Stage . 29
3.3 The Alter Stage . 31
3.4 The Evaluate Stage . 33
3.5 The Accept Stage and the Adjust Temperature Module 37
3.6 Summary of the Architecture and System Performance Characterization . . 39
3.7 Differences between Software and Hardware Implementations 42
3.8 Enhancements through PDR and TMR . 42

3.8.1 PDR applied to the Evaluate sub-system 42
3.8.2 TMR applied to the entire AMPS accelerator circuit 43

3.9 Performance of the AMPS Accelerator Circuit 45

4 Architecture Derivation Methodology . 51
4.1 Functional Block Partitioner . 53
4.2 Constant Extractor . 53
4.3 GCC . 53
4.4 CDFG Generator and Optimizer . 55
4.5 Area and Timing Metadata . 57

4.5.1 Estimating Resource Usage . 57
4.5.2 Determining Relative Resource Costs 70

4.6 Scheduling and Mapping (SAM) . 72

v

4.6.1 Introduction . 72
4.6.2 Possible SAM Algorithms . 75
4.6.3 SAM Method of Choice . 79

4.7 HIF to VHDL Converter . 83

5 Results . 84
5.1 Test Cases . 84

5.1.1 Traveling Salesperson . 84
5.1.2 Graph Coloring Problem . 85
5.1.3 Dependency Graph Violation Removal Problem 87

5.2 SATH vs. Impulse/PPC/X86 . 88

6 Conclusions and Future Work . 95

References . 96

Appendices . 103
Appendix A Iterative Repair C Code . 104
Appendix B TSP C Code . 109
Appendix C Graph Coloring C Code . 112
Appendix D Dependency Graph Violation C Code 115

vi

List of Tables

Table Page

2.1 Truth Table for Eq. (2.1) . 4

3.1 Variable Definitions . 26

3.2 Reconfiguration Time of Evaluate and AMPS Accelerator Circuit 48

3.3 Architecture Resource Usage of Fault Injected Circuits 48

3.4 Sensitivity of Fault Injected Circuits . 49

4.1 Measured Resource Utilization and Clock Speed for Discrete Sizes of Integer
Adders . 59

4.2 Measured Resource Utilization and Clock Speed for Discrete Sizes of Integer
Multipliers . 61

4.3 Measured Resource Utilization and Clock Speed for a 4-to-1 Multiplexer . . 64

4.4 Measured Resource Utilization and Clock Speed for an 8-to-1 Multiplexer . 64

4.5 Computed vs. Actual Values for Simple Add/Multiply Circuit 67

4.6 Resource Utilization for Multiplexed Add/Multiply Circuit 68

4.7 Resource Usage for the Circuit Shown in 4.17 68

4.8 Resource Usage Data for Four Versions of a Floating-Point Multiplier . . . 70

4.9 Comparisons Using RALFs for the Multipliers from Table 4.8 71

4.10 RALF Comparisons for an Adder and a Multiplier 71

4.11 ASAP and ALAP Schedules for the SAM Problem Shown in Fig. 4.18 . . . 74

4.12 Node Distribution by Type for the DFG Shown in Fig. 4.19 75

vii

List of Figures

Figure Page

2.1 Example FPGA-style LUT and routing network. 5

2.2 Continuous planning partitions. 14

2.3 Iterative Repair flowchart. 15

2.4 The Simulated Annealing algorithm. 16

2.5 The Genetic Algorithm. 17

2.6 The Stochastic Beam Search. 17

2.7 Hardware implementation of a Genetic Algorithm with short chromosomes [1]. 19

2.8 Simulated annealing pseudocode. An optimal solution is derived by repeat-
edly executing the five steps. 21

2.9 An example of iterative repair using simulated annealing. A solution is
copied, altered, evaluated, compared against the current solution, and ac-
cepted conditionally. This process is repeated thousands of times to arrive
at the optimal solution. 23

3.1 A dependency graph for 40 events. Events are represented by the numbered
nodes. Edges indicate dependencies. Each event also uses one of four resource
types, designated by the shape of the node. 25

3.2 Iterative repair architecture. A pipelined processor with associated memory
constructs is derived from the simulated annealing pseudocode. 27

3.3 Multiport memories using BRAMs. In (a), four read ports use four BRAMs.
In (b), four write ports use four BRAMs, but four clock cycles are needed to
allow a write from each port. 28

3.4 Multiplexed connections between processing stages and memory modules for
read accesses. Each memory block has four read ports. 29

3.5 Multiplexed connections between processing stages and memory modules for
write accesses. Each memory block has one write port. 30

viii

3.6 Method for passing memory block pointers between processing stages when
(a) the solution in the Accept stage is NOT accepted and (b) the Accept
stage solution is accepted. 30

3.7 Memory circuit that allows for double-wide data transfers in addition to
word-sized accesses. 32

3.8 The Alter stage. 33

3.9 The dependency graph violation substage (DGV). 34

3.10 The total schedule length sub-stage (TSL). 35

3.11 The resource over-utilization sub stage (RO). 36

3.12 The Accept stage. 38

3.13 The Adjust Temperature module. 39

3.14 Best-case AMPS accelerator performance. 40

3.15 Worst-case AMPS accelerator performance. 41

3.16 System block diagram for partial reconfiguration of Evaluate module. . . . 44

3.17 Resource usage (LUTs) for 10 example problems. 45

3.18 Resource usage (flip-flops) for 10 example problems. 46

3.19 Resource usage (BRAMs) for 10 example problems. 46

3.20 Resource usage (DSP48s) for 10 example problems. 47

3.21 Power usage for 10 example problems. 47

3.22 Execution times for 10 example problems on both custom hardware and
PowerPC 750. 49

3.23 Hardware vs. software results comparison. 50

4.1 Typical steps for hardware and software design. 52

4.2 Block-level diagram for translating simulated annealing C code to hardware. 54

4.3 Example of source C code and comparable 3-address single assignment code. 55

4.4 Obtaining a CDFG from 3-address single assignment code. 56

ix

4.5 Optimization of a CDFG. 57

4.6 Optimization of a more-complex CDFG. Loop unrolling and predicative ex-
ecution are represented. 58

4.7 LUT and flip-flop consumption for integer adders. 60

4.8 Maximum clock frequency for integer adders. 61

4.9 LUT utilization for integer multiplier. 62

4.10 Flip-flop utilization for integer multiplier. 63

4.11 DSP48 utilization for integer multiplier. 63

4.12 Maximum clock frequency for integer multiplier. 64

4.13 LUT utilization for 4-to-1 multiplexers. 65

4.14 LUT utilization for 8-to-1 multiplexers. 66

4.15 Simple circuit with an addition operation followed by a squaring operation. 66

4.16 Multiplexed add/multiply circuit. 68

4.17 An example architecture from a simulated annealing Alter stage. 69

4.18 Possible schedules and mappings for a simple DFG. The DFG shown in (a)
can be scheduled and mapped as shown in (b) or (c). 73

4.19 A typical evaluate stage DFG for evaluation by the SAM algorithm. 75

4.20 Example of a DFG (a) with an associated architecture (b), including a mul-
tiplexer and three delay registers. 77

4.21 SAM execution flowchart. 82

4.22 Conversion of HIF to VHDL. 83

5.1 Example traveling salesperson problem for ten cities. The edges represent
two possible orders of visitation. 84

5.2 Solution format and alter strategy for TSP. 85

5.3 An adjacency graph for GCP consisting of 20 regions. 86

5.4 Solution format and alter strategy for GCP. 87

x

5.5 Example of a dependency graph. Nodes represent tasks and edges represent
dependencies. 88

5.6 Comparative performance in total execution time. 89

5.7 Speedup of SATH-generated circuits comparing total execution time with
respect to other implementations. 90

5.8 Comparative performance in cycles per iteration. 90

5.9 Speedup of SATH-generated circuits comparing clock cycles per iteration
with respect to other implementations. 91

5.10 Comparative LUT usage of circuits generated using Impulse and SATH. . . 92

5.11 Comparative flip-flop usage of circuits generated using Impulse and SATH. 92

5.12 Comparative DSP48 usage of circuits generated using Impulse and SATH. . 93

5.13 Comparative BRAM usage of circuits generated using Impulse and SATH. . 93

5.14 Comparative RALF usage of circuits generated using Impulse and SATH. . 94

1

Chapter 1

Introduction

In this introductory chapter, the motivation for deriving application specific hardware

from a software source is discussed. Challenges that complicate the process are presented.

Contributions of this research work are enumerated and an overview of the content of the

remaining chapters is also included.

1.1 Motivation

Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular as a plat-

form of choice for spacecraft computer systems. FPGA-based designs are much cheaper and

have a shorter development cycle than traditional Application-Specific Integrated Circuits

(ASICs), and provide more computing power and efficiency than standard microprocessors.

Some of the current and planned space missions and experiments that utilize FPGA tech-

nology include MARTE (Mars Astrobiology Research and Technology Experiment) [2], the

Discovery and New Frontier programs [3], the Dependable Multiprocessor [4], the Venus

Express mission [5], and NASAs DAWN mission [6].

Simulated annealing is a widely used heuristic algorithm to solve challenging optimiza-

tion problems. While it has been used extensively for static time design optimization, there

is an increasing need to deploy such solvers in real time embedded systems. For example,

NASA uses the CASPER [7] and ASPEN tools [8, 9] to design code for Iterative Repair,

a simulated annealing algorithm that derives complicated event schedules on-board space-

craft. The complexity of these algorithms can be daunting for space based computers, which

are significantly slower than state of the art microprocessors.

Combining FPGAs with simulated annealing algorithms would greatly improve system

performance. Unfortunately, hardware architecture design targeting FPGAs is much harder

2

and more time consuming than software design and is daunting for software engineers

without expertise in VLSI design.

To mitigate this design flow barrier, a methodology for the automatic derivation, from

source code of simulated annealing scheduling algorithms, of FPGA-based application-

specific processors is presented. This methodology is termed SATH (Simulated Annealing

to Hardware).

1.2 Principal Contributions

The aims of this work are as follows. Mainly, a method for the conversion of software

source code into appropriate hardware circuits designed to accelerate simulated anneal-

ing algorithms is described. The importance of selecting a proper architecture template

is discussed. A method for design-time approximation of required hardware resources is

presented. The performance of simulated annealing circuits generated using the proposed

methodology are compared with the performance of circuits generated using a commercially-

available software-to-hardware conversion tool, with significant improvements in both execu-

tion time and resource usage attained across all test cases. The execution time of the custom

circuits are also compared execution time of standard desktop and space-based processors.

While this research is specific to deriving hardware to accelerate simulated annealing codes,

the techniques presented are applicable to a broad range of problem domains.

1.3 Overview

An overview of related works is presented with critical analysis in Chapter 2. Chapter 3

discusses a hardware template, by means of an example, that is used as a basis for converting

software to hardware. Chapter 4 details the SATH algorithm to derive custom processors.

Chapter 5 provides results comparing the performance of SATH-generated circuits and

compares with that of traditional space-based processors and existing C-to-gates tools.

Chapter 6 summarizes the research and provides directions for future work.

3

Chapter 2

Background

This chapter discusses recent advances in the different areas that are applicable to

this research work. Topics of interest include FPGAs, C-to-hardware compilers, high-level

synthesis techniques, and simulated annealing.

2.1 FPGAs

An FPGA is a silicon device that is in some ways comparable to an Application-Specific

Integrated Circuit (ASIC). The vast majority of large-scale integrated devices used today in

industry are ASICs, meaning that they are permanently configured for a specific application.

An FPGA, on the other hand, consists of several static random access memory (SRAM)

based reprogrammable logic blocks along with reprogrammable inter-block connections,

allowing a single FPGA to be reprogrammed and used in a variety of applications. While

FPGAs have the benefit of being dynamically reconfigurable, they are also larger, slower,

and more power-hungry than ASICs. As FPGA technology continues to improve, they will

command an increasing share of the integrated circuit market. Much research is currently

being done on FPGA methods and applications. In addition to thousands of logic blocks,

modern FPGAs from Xilinx [10,11] and Altera [12] have rich and powerful computing fabrics

with complete with embedded ASICs such as multiply-accumulate units, block RAMs, and

digital clock managers.

The basic building block of a traditional FPGA, as described in [13], is the lookup

table (LUT). Modern FPGAs from Xilinx consist of thousands of four-to-one [10] or six-to-

one [11] LUTs. A LUT is a memory element. Input lines represent an address. The output

line provides the data stored at that address. Thus, any logical function that consists of

four or fewer inputs and a single output can be mapped onto a LUT. Multiple LUTs are

4

Table 2.1: Truth Table for Eq. (2.1)
Inputs Output

a b c d f
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

employed to support more-complex functionality. As a simple example, consider the logical

expression described by Eq. (2.1).

f = (ab + cd) (2.1)

This function will fit in a single LUT, as there are four inputs and one output. The truth

table for this function is shown in Table 2.1. The truth table is a direct representation

of memory addresses and memory contents. All LUTs also have an associated flip-flop,

which can be employed if desired, allowing both synchronous and asynchronous designs.

LUTs communicate using programmable routing networks, which are configured to allow

appropriate signal flow through the circuit. Fig. 2.1 shows a close-up of a typical four-to-one

LUT with associated logic, and additionally an example of how multiple LUTs might be

configured in a routing network. Because of the reprogrammable nature of both the LUTs

and the routing network, an FPGA can be configured to create a vast number of circuits.

2.2 C-to-Hardware Compilers

Converting C code into a hardware specification has been a much-researched area over

5

Fig. 2.1: Example FPGA-style LUT and routing network.

the past two decades. Several tools have been produced over this time period, each of

which targets specific areas of the software to hardware conversion. In [14] a comprehensive

summary of the different projects is provided. A summary of each of these tools is provided

here.

The first attempt at a C to Gates tool was Cones [15], which was developed in 1988

at AT&T Bell Laboratories. Cones works on a subset of C with the introduction of some

additional directives to facilitate translation to hardware. Cones translates C functions into

combinatorial blocks, based upon the premise that a function consists of several inputs that

influence one output. Arithmetic and logic statements are reduced through the use of Kar-

naugh Maps and similar techniques. Cones also unrolls simple loops. Cones cannot handle

pointers, nested loops, recursive function calls, or dynamic memory allocation. Additional

syntax is introduced to specify input and output data for each C function.

HardwareC [16] was developed at Stanford University in 1990. It is based upon the same

syntax as conventional C, but includes custom hardware semantics. HardwareC additions

include both procedural and declarative semantics, which means a design can consist of

either sequences of operations or as a structure of interconnecting components. HardwareC

models hardware as concurrent processes with inter-process communication facilities. The

level of parallelism can be specified by the programmer to be sequential, data-parallel, or

6

parallel for a given design. Lastly, HardwareC supports constraint specifications, where

time and resource constraints can be imposed.

Transmogrifier C [17] from the University of Toronto was released in 1995. It is another

variation on a subset of the C programming language. Integer addition and subtraction

are supported. Compiler directives are used to specify data lengths. If statements, while

loops, and function calls are also supported. The compiler does not support multiplication,

division, pointers, arrays, structures, recursion, or floating-point arithmetic.

In 2002 SystemC [18] was introduced. SystemC is actually a C++ library. Classes are

defined for simple Verilog constructs such as combinatorial and sequential modules. Simple,

user-specified concurrency is allowed through the use of threads. SystemC is primarily a

simulation language, although a restricted subset can be synthesized. Similarly, Ocapi [19]

and PDL++ [20] are also built on C++. Proprietary classes are provided for creating

finite state machines and data paths. The C++ code is translated to VHDL or Verilog for

synthesis and design implementation.

One of the most successful ventures at translating C code to hardware was C2Verilog

[21], which was introduced in 1998. C2Verilog supports standard ANSI C code. The

programmer is not required to provide any hints or directives on concurrency or partitioning.

The entire C language is supported, including pointers, recursion, floating-point data types,

arrays, structures, etc. C2Verilog works by performing global analysis on a program and

creating always blocks and concurrent statements. Functions are represented using state

machines. Pointers and dynamic memory allocation are managed by creating a dedicated

RAM of sufficient size and sufficient IO ports to allow for efficient access.

Cyber [22], released by NEC in 1999, is yet another subset of the C programming

language. The C subset is once again augmented with bit-length and input/output port

declarations, as well as data-transfer types such as registers, terminals, latches, and tri-

state buffers. The programmer must also specify code sections that are synchronous, asyn-

chronous, or concurrent. Typically, difficult constructs such as recursion, dynamic memory

allocation, and pointers are not supported. This augmented subset of C is termed BDL

7

(Behavior Description Language). Cyber is actually a behavioral synthesis system that

takes behavioral code in BDL or VHDL and produces synthesizable register transfer logic.

Handel-C [23], developed by Celoxica, is a widely-used C variant. Handel-C is built

upon the CSP [24] algebra for modeling process concurrency. Data widths can be specified

by the programmer. The programmer can designate code sections as being concurrent.

Input and output ports are introduced to allow an interface with the outside world. Syn-

chronous message massing between processes is available. A variation on the basic C switch

statement generates hardware multiplexers. Every instruction in Handel-C takes a single

clock cycle. Bach C [25] is almost identical to Handel-C, providing the same explicit con-

currency and message-passing capabilities. Pointers are not handled in either Handel-C or

Bach C.

Another C variant is SpecC [26]. SpecC provides a set of 33 key words as additions to

the ANSI C language that specify how the compiler should create finite state machines, con-

currency, pipelining, etc. Once again, complicated features such as recursion and pointers

are not supported.

The Trident C compiler [27] is a tool targeted specifically at floating-point operations.

Concurrency and throughput are maximized through the use of pipelined floating-point

units on an FPGA. Yet again, features such as dynamic memory allocation and pointer

manipulations are not supported.

Another work worthy of mention is SPARK [28]. SPARK translates a subset of ANSI

C to register-transfer level VHDL. Much work is done on the analysis of loops and condi-

tional branches. Speculative code execution is also employed, meaning that computations

performed within a conditional block are commenced before it has been determined that

the block will be entered. Compile-time analysis is performed to determine what the best

instructions are for speculative execution. The SPARK compiler cannot handle pointers or

dynamic memory allocations.

Another system of note is CASH [29]. CASH, or Compiler for Application-Specific

Hardware, differs from all previously mentioned systems because it generates asynchronous

8

hardware. Starting from a pure ANSI C code, CASH identifies instruction level parallelism

and generates asynchronous data-flow circuits that support these parallel constructs.

One of the most-recent players in the C-to-gates market is Impulse [30, 31]. Impulse

claims to be a true subset of C. It consists of a C library which provides a functional interface

for mixed-signal design. It does not support nested function calls. Some instruction-level

parallelism can be explicitly identified by the programmer.

To summarize this discussion on work in the area of C-to-architecture translation,

compiling pure C code into gates is a difficult task. Common areas of difficulty include

recursive function calls, dynamic memory allocation, pointer manipulation, support for

all C data types (including floating point representations), and detection of concurrency.

In [14] a detailed discussion of the shortcomings of using C to derive hardware is presented.

Specifically, the concepts of concurrency, timing, data types, and communication can not be

specified using standard C. These issues are generally resolved by either reducing the input

language to a restricted subset of C, or by introducing compiler directives or other keywords

or labels to indicate how the compiler should proceed. The ideal situation is to start with

fully compliant ANSI C source code, thus allowing for the translation of existing code

directly into hardware without modification. Of all the projects discussed, only C2Verilog

claims to support the entire ANSI C standard with no restrictions or additions. This

means that the C2Verilog compiler is responsible for all extraction of parallelism. While

the C2Verilog compiler can identify instruction and loop-level parallelism, it cannot extract

process-level parallelism. The ability of the compiler to recognize parallelism is directly

dependent upon the syntax of the source code source codes written with concurrency

in mind generally result in better hardware architectures than those that are written for

conventional sequential machines. In addition, current C-to-hardware tools fail to take into

account several important hardware design factors, including available FPGA area, power

consumption, execution speed, and fault tolerance, all of which are critical to engineering in

the space environment. In Chapter 5, results obtained from the Impulse tool are compared

with the novel architecture generation approach described in this research.

9

2.3 High Level Synthesis Techniques

High level synthesis (HLS) in the context of FPGA-based architectures is a powerful

tool. HLS is, in essence, utilizing one or more search algorithms to derive an efficient

hardware architecture that can support an algorithm specified in high-level code. The goal

is to identify the architecture that yields the best tradeoff between conflicting goals, such

as FPGA area usage versus system throughput. The number of possible architectures is

generally very large, thus demanding an intelligent search method to arrive at a solution

within a reasonable amount of time. Common techniques for performing HLS include

integer linear programming, Markov decision processes, Pareto optimality, and dynamic

programming, well as heuristic searches such as simulated annealing, genetic algorithms,

tabu search, and design-space pruning. Heuristic scheduling algorithms are also applicable

to this discussion. A sampling of some of the different techniques used for HLS is discussed

in this section.

As part of HLS, a target processor type must first be selected to guide the synthesis.

An overview of the different types of processors that are typically considered is provided in

[32]. Reduced Instruction Set (RISC), Complex Instruction Set (CISC), VLIW (Very Long

Instruction Word), dataflow, tagged-token, and pipelined architectures are all commonly

utilized. An HLS algorithm is generally restricted to one flavor of processor in order to

put an upper bound on the time needed to search the architectural space. Trying to search

across all possible architectures is considered to be an intractable problem.

Generally used heuristics for HLS include the comparable techniques of simulated an-

nealing, genetic algorithms, and tabu search. A study has been performed which compares

the three methods, arriving at the conclusion that tabu search may be better in some in-

stances [33]. In [34], a good description of performing HLS for a reconfigurable processor is

described. Important elements to be considered in the architecture space include allocation

of computational, control, and memory resources, along with the scheduling of operations

onto these resources. Exploration can occur in both parallelization (spatial optimization)

and pipelining (temporal optimization). Simulated annealing is employed as the heuristic

10

search method. Over thousands of iterations of the simulated annealing algorithm, the

throughput of the processor gradually improves.

An HLS using genetic algorithms is given in [35], which details the use of a genetic

algorithm for deriving a custom architecture for a digital camera. The processing platform

consists of a PowerPC core, data cache, instruction cache, memory, and buses. Different

architectures are derived depending upon the file format and photo resolution.

In [36] an improvement to the basic genetic algorithm is proposed. A genetic algo-

rithm maintains a population of current solutions at any given time during execution. A

technique called fuzzy clustering is introduced which combines solutions into clusters or

groups based upon score. The GA can then discard lower-scoring clusters and focus on the

more-promising ones. This technique is once again applied to deriving VLIW architectures

for video processing.

A project is presented in [37] in which an iterative improvement algorithm (based upon

simulated annealing) is utilized to design processors for noise cancellation algorithms. The

resulting processor is a VLIW processor with an arbitrary mix of multipliers, adders, and

multiply-and-accumulate units.

Additional tools that use simulated annealing coupled with the concept of Pareto-

optimality are presented in [38] and [39]. A solution is said to be Pareto-optimal if there does

not exist a solution that betters one parameter without worsening one or more of the others.

These Pareto-optimal solutions can be used to guide the search of the simulated annealing

algorithm. While a Pareto-optimal solution may not be a globally optimal solution, it is a

good candidate for an area in which to focus the search. This technique was applied to a

MIPS processor platform with adjustable data cache, instruction cache, and main memory

sizes. Typical benchmarks in signal processing and image conversion were used to test the

system.

In [40], a system has been developed to explore the space of heterogeneous micro-

architecture processors, 20 to 50 of which may reside on a single FPGA. The search tool

uses Integer Linear Programming as the search method, where the goal is to maximize

11

throughput. Integer Linear Programming is a method for solving a system of linear in-

equalities. The linear constraints define a polyhedron, whose edges can be traversed until

the optimal solution is found. Integer Linear Programming is an NP-complete algorithm

that is often coupled with branch-and-bound techniques to reduce the compute time. The

tool was tested by implementing an FPGA-based IPv4 packet forwarder that can outper-

form a hand-tuned design.

Another Integer Linear Programming HLS system is presented in [41]. ILP is used

to determine the most profitable extensions that should be added to a base processor for

various data encryption and decryption techniques for high-bandwidth data. Extensions can

include additional arithmetic units or combinations of units, such as a multiply-accumulate

unit. The processor is targeted for implementation on an ASIC and the typical constrained

optimization problem of throughput versus area utilization is solved.

The inventors of SUIF have also made significant inroads in the area of FPGA-based

HLS, specifically targeting source code that consists of multi-dimensional array accesses [42].

Concepts from SUIF have been combined with ideas from C-to-architecture tools to develop

a method for exploring the time/space tradeoff in a custom FPGA architecture. The method

involves the use of hardware synthesis tools from Xilinx or Altera as a mechanism for

providing timing and area estimates for a potential design. The design is revised over many

iterations of trial-and-error until an acceptable (but not necessarily optimal) architecture

is discovered.

One technique for decreasing the time needed to find an architecture is a technique

known as design space pruning [43]. Essentially, this method provides early estimates of

area/latency tradeoffs to the search engine, immediately eliminating any solutions that

are estimated to be poor performers by bounding the value of acceptable solutions. The

searcher can then focus on optimizing more promising solutions. This technique can be

successfully employed in combination with a standard exhaustive search, or with one of

the other heuristic searches. Estimations are performed by modeling architecture efficiency

based upon number of data-path operators, data bit-widths, register file size, number of

12

control units, control signal complexity, total memory size, and number of read and write

ports needed to support concurrent memory accesses. The resultant architecture would

generally be a VLIW-style processor.

Another technique for HLS is to model the search problem as a Markov Decision Process

(MDP) [44]. An MDP is a flavor of reinforcement learning in which a program traverses

design states in a decision tree probabilistically according to values that have been learned

over time. In other words, an MDP is initially a poor-performing random search. However,

over thousands of trials, the MDP can be trained to produce high-quality architectures.

This algorithm has been applied successfully to derive custom VLIW processors for various

image and video compression algorithms.

When the HLS problem consists of a traditional load/store processor that needs to be

streamlined for a specific application, a technique such as CUSTARD [45] can be used to

design an efficient multi-threaded processor. CUSTARD begins with a traditional MIPS

integer pipeline processor. The processor is customized in three ways. First, unneeded

instructions are removed from the instruction set. Second, additional pipelines are intro-

duced to maximize parallelism. Each pipeline need not be identical; rather, each can be

customized to support only the needed instructions. Third, the simple instructions sup-

ported by the MIPS RISC architecture can be combined to form more complex instructions

(combining multiplication with addition to form a multiply-accumulate instruction is one

common example). The cost of introducing complex instructions must be evaluated care-

fully, as they sacrifice versatility for speed. A cycle-accurate simulator is used to measure

the performance of the candidate processors.

Heuristic scheduling methods such as List Scheduling [46] and Force-Directed Schedul-

ing (FDS) [47, 48] also play a part in the HLS discussion. List Scheduling attempts to

minimize execution time by finding the best schedule of a dataflow graph given a set of

resources. Force-directed scheduling attempts to derive the smallest set of resources needed

to schedule a dataflow graph within a fixed execution window. Neither method takes care

of actually mapping graph nodes to resources; thus timing and routing overheads (regis-

13

ters and multiplexers) are ignored. While these techniques are useful for scheduling small

graphs, they are not optimal schedulers. Variations to the basic List Scheduling algorithm,

such as Modified Critical Path [49,50], Earliest Time First [51], Dynamic Critical Path [52],

topological clustering [53], Critical Node Parent Trees [54], Cone-Based Clustering [55], and

Partial Critical Path scheduling [56], have been proposed over the years. These algorithms

improve the performance of the basic List Scheduling algorithm at the expense of increas-

ing algorithm complexity. Modifications to the FDS algorithm include one which combines

scheduling with mapping into a schedule-and-map (SAM) algorithm [57].

In summary, HLS is a powerful tool. Many search strategies exist and many appli-

cations can be targeted. The tradeoffs between a heuristic approach such as simulated

annealing (faster results) and an exhaustive approach such as integer linear programming

(correct results) must be weighed carefully. HLS techniques can take place at different

design levels. Discrete components such as processors and memories can be combined in

different ways, or the internals of the processor itself can be customized.

2.4 Iterative Repair and Simulated Annealing

ASPEN (Automated Scheduling and Planning Environment) [9] and CASPER (Con-

tinuous Activity Scheduling, Planning, Execution, and Replanning) [7] are tools that were

developed at the Jet Propulsion Lab for use in modeling and implementing space-based

mission planning and scheduling algorithms. ASPEN consists of a GUI-based design envi-

ronment that supports a C-like programming language for modeling events that must be

scheduled. CASPER is a stripped-down version of ASPEN that was designed to fly on

the satellite, performing dynamic planning and continuous rescheduling of mission-critical

events in real time. CASPER continuously runs an Iterative Repair algorithm to constantly

improve and update the schedule. In traditional planning methods, events are labeled as

either in view or beyond the horizon. Only those events that fall within the event horizon

are planned. Continuous planning takes a different approach. Rather than utilizing discrete

event horizons, all tasks to be scheduled are available to the planner at all times. The tasks

are divided into short-, medium-, and long-range types, where short-range tasks are the

14

most detailed in terms of specific start-times, exact event durations, resource utilizations,

etc., while long-range task representations are very general, rough estimates of timing and

resources needs. This organization is shown in Fig. 2.2. As time progresses, tasks pass

Fig. 2.2: Continuous planning partitions.

from one planning frame to another, depending upon time left until execution. The planner

runs constantly to improve the schedule. The Iterative Repair algorithm runs as detailed

in Fig. 2.3. A first-guess solution is generated initially which satisfies timing constraints

while ignoring resource constraints. This solution is then gradually improved, or repaired,

over many iterations until an optimal (or close-to-optimal) schedule has been found. These

improvements are made by either reassigning an event to an unused resource or moving the

event to a different time slot.

Iterative Repair is, by nature, a greedy algorithm. Schedules can be improved to a

point, but the algorithm can become trapped in a local optimum in the search space. One

or more inferior solutions may need to be used as stepping stones to arrive at the global

optimum. This technique of sacrificing local optimally for the global good is employed

by Simulated Annealing. Simulated Annealing is a method for performing combinatorial

optimization on a large search space where an exhaustive search is not tractable. Simulated

Annealing is based upon the metallurgic phenomenon of annealing, in which a metal is

heated to an extremely high temperature and then allowed to cool slowly, resulting in

15

Fig. 2.3: Iterative Repair flowchart.

16

a (near) minimal energy configuration of the crystalline structure. Simulated Annealing

takes an initial solution and minimizes the energy of the solution through successive steps,

in each of which a slightly different solution is compared to the current solution. In order

to avoid becoming trapped in local optima, solutions with higher energies are accepted

probabilistically, based upon the current temperature of the system. The temperature is

gradually lowered over many iterations until an optimal solution is found.

As discussed above, the Iterative Repair algorithm for event scheduling utilizes the

Simulated Annealing heuristic to effectively search for optimal solutions. Other common

heuristic searches which yield similar results and which could be used in place of Simulated

Annealing include Genetic Algorithms [58] and Stochastic Beam Search. A summary of

all three methods is provided in [59]. Pseudocode for the three algorithms is presented

below in Fig. 2.4, Fig. 2.5, and Fig. 2.6. All three algorithms operate on variations of the

Fig. 2.4: The Simulated Annealing algorithm.

same general premise: gradually improve a solution (or set of solutions) over time until a

solution of sufficient quality is discovered. Simulated Annealing (SA) operates on a single

solution, while Stochastic Beam Search (SBS) and Genetic Algorithm (GA) maintain a

17

Fig. 2.5: The Genetic Algorithm.

Fig. 2.6: The Stochastic Beam Search.

18

pool, or population, of solutions (solutions are also termed chromosomes in GA). All three

algorithms utilize similar subroutines for evaluating solutions and generating new solutions,

although the crossover and mutation operators used in GA are a bit more complicated. All

three algorithms also depend heavily on random number generation and probabilities. GA

and SBS differ from SA in the technique used for avoiding entrapment in local optima. In

SA, suboptimal moves are accepted as long as the temperature is sufficiently high and the

value of the new solution is reasonably good. GA and SBS solve the problem by maintaining

a pool of current solutions such that it is statistically impossible for all solutions to fall in

an area around the same local optima.

In theory, implementing combinatorial search algorithms in hardware could significantly

speed-up the search process. Large amounts of parallelism and pipelining can be extracted

from SA, GA and SBS, since deriving a new generation is largely only a function of the

previous generation. Hardware-based GA implementations abound in the literature. Some

recent examples of FPGA-based GAs are discussed here.

A GA has been implemented on an FPGA for the purpose of blind signal separation [1].

Function-level pipelining has been implemented. The high-level flow chart, which is almost

identical for all hardware GAs surveyed, is shown in Fig. 2.7. This system was implemented

on a Xilinx Virtex FPGA, using a chromosome length of 64 bits and a population size of

80 chromosomes. As long as the chromosome length is kept reasonably small, this type

of technique in which entire chromosomes are passed between pipelined modules works

well. GAs are also commonly used for filter design. In [60], a GA for grey-scale filter

design has been implemented on a Xilinx Spartan II FPGA. A pipelined approach similar

to the one shown in Fig. 2.7 is once again taken. Chromosomes are 16 bits in length and a

generation consists of 10 chromosomes. Another example is using a GA to perform function

interpolation [61]. In this case, chromosomes are 24 bits in length or less. A system for

maximizing algebraic expressions has been developed with 5-bit chromosomes [62]. Three

different sets of libraries and design algorithms written in both Verilog and VHDL for the

implementation of various types of GAs with relatively small chromosome lengths have also

19

Fig. 2.7: Hardware implementation of a Genetic Algorithm with short chromosomes [1].

20

been developed [63–65].

The examples discussed above are very simple, as the chromosome length in all cases is

so small that the entire chromosome can be passed between pipelined modules simultane-

ously. Most real-world problems, however, are complex enough that a chromosome can be

hundreds of bytes in length. The simple pipelined implementations discussed above clearly

cannot handle this complexity, as 100-byte wide busses are not feasible for implementation

on an FPGA.

One method for resolving this problem is to split the chromosome into manageable

chunks and transfer one chunk of data on each clock cycle [66]. This allows a modified

version of the simple pipelined architecture to be created. Obviously, as the ratio between

chromosome length and bus width grows, the time used in data transfers also increases.

Traveling Salesperson is the classic combinatorial search problem, the goal being to find

shortest path for visiting every node in a set exactly once. A version of the problem has

been solved using GA on a Xilinx Virtex-E FPGA [67]. Rather than coding modularly in

VHDL or Verilog, the implementation was performed using Handel-C. Population size is 200

chromosomes, with the chromosome size being variable. Explicit pipelining is not realized

in this design, as Handel-C is a behavioral language rather than a structural language. Any

parallelization is specified by the programmer and interpreted by the Handel-C compiler.

An example of performing SBS in hardware was used for speech recognition algorithms

[68]. Chromosome widths in this example are once again limited to a few bits. Because of

the inherently serial nature of the SA algorithm, it is not generally considered an interesting

problem for parallelization or hardware implementation.

The chromosomes needed for scheduling are much larger than what can be transmitted

on a bus in one shot. For example, take a system in which 100 tasks need to be scheduled

within a 24 hour period. If the tasks need to be scheduled with a resolution of 1 minute,

the chromosome would consist of 100 11-bit numbers. An 1100-bit chromosome is much

too large to transfer as a single chunk. Novel architectures must be developed to accelerate

this algorithm.

21

A hardware implementation of the FPGA place-and-route algorithm using Simulated

Annealing has been done [69]. The place-and route algorithm searches for a layout of a

circuit on an FPGA, including the use of both logic blocks and routing resources, that

minimizes resource utilization while maximizing circuit performance. The architecture in

this case is based upon systolic arrays, rather than the pipelined structure advocated in this

paper. Comparable speedups approaching three orders of magnitude were found using this

architecture. As Simulated Annealing is the heuristic search employed by Iterative Repair,

Fig. 2.8: Simulated annealing pseudocode. An optimal solution is derived by repeatedly
executing the five steps.

a detailed description of the algorithm is now provided. As described in Fig. 2.4 and revised

in Fig. 2.8, an initial solution is generated, usually randomly, and evaluated. This initial

solution is designated as the current solution until a new one is accepted. The main loop is

now entered, which generally loops several thousand times. On each iteration, the current

solution is copied verbatim to a second buffer, where it is designated as the next solution.

This next solution is then altered slightly and evaluated. The score of this new solution

is then compared against the score of the current solution. The crux of the algorithm is

determining whether to accept the next solution as the new current solution or discard it

in favor of the keeping the resident current solution. This decision is made according to

Eq. (2.2).

p = e
∆E
T ,∆E = Snext − Scurrent (2.2)

In this equation, Snext and Scurrent are the scores of the current and next solutions, re-

spectively, and T represents temperature. The probability p is a function of both the

22

temperature and the difference between the score of the current solution and the score of

the new solution (∆E). A random number is generated and compared to p to determine

whether a solution should be accepted. When the temperature is high, suboptimal solu-

tions are more-likely to be accepted. This feature allows the algorithm to escape from local

minima as it searches the solution space and zero in on the true optimal solution. The

last step in the loop decreases the temperature according to a pre-determined schedule. A

typical method is to geometrically decrease the temperature by multiplication by a cooling

rate, which is generally a number such as 0.99 or 0.999. The closer the cooling rate is to

1.0, the more times the loop will execute. This results in longer program execution, but

also improves the probability of finding the best solution. Cooling too fast reintroduces the

local-optima entrapment problem to the system.

Fig. 2.9 shows how simulated annealing can be applied to an iterative repair problem. In

this case, a simple example consisting of ten events is presented. These events are numbered

0 through 9, and can be treated as indices to a solution array in computer memory. At any

point in time, two solutions are maintained: the current solution and the potential next

solution. From Fig. 2.4, the first step in the loop is to copy the current solution into the next

solution buffer. Once this is done, the next solution must be altered in some way. Fig. 2.9

depicts a simple value swap, where two events are selected at random and the respective

start times are swapped. This new solution must then be evaluated to determine how it

compares with the current solution. Factors to take into consideration when computing the

value of a schedule could include effective resource utilization, dependency graph violations

(when a child event is scheduled before a parent event), and overall length of the schedule.

Once the new schedules value has been determined, Eq. (2.2) is applied to determine whether

or not it should replace the current solution. If the next score is better than the current

score, it replaces the current score unconditionally. If it is worse, it is accepted with the

computed probability, depending on both the score of the solution and the temperature.

The temperature is then updated as described previously. This process is repeated until the

temperature falls below a predetermined threshold, at which time the best schedule found

23

Fig. 2.9: An example of iterative repair using simulated annealing. A solution is copied,
altered, evaluated, compared against the current solution, and accepted conditionally. This
process is repeated thousands of times to arrive at the optimal solution.

is returned by the system.

2.5 FPGAs in the Space Environment

The space environment is not electronics-friendly. The sun is constantly spewing large

amounts of fast-traveling, highly-charged particles into space in a phenomenon known as

the solar wind [70]. These high-energy particles can affect electronic circuits in a variety

of ways, causing single-event upsets (SEUs) and single-event latchups (SELs). SEUs occur

when a transistor is energized by a high-energy particle, resulting in a bit flip. This phe-

nomenon can occur in any part of a circuit, resulting in temporary data corruption, code

corruption, or, in the case of an FPGA, even hardware architecture corruption. A SEL is

similar to a SEU, occurring when a high-energy particle permanently damages a transis-

tor rendering it unusable. Techniques have been developed for implementing fault-tolerant

circuits on FPGAs. In [71] a summary is provided of current techniques for implementing

fault tolerance on SRAM-based FPGAs.

24

For example, in [72], a system is specified for utilizing Triple Modular Redundancy

(TMR) to provide fault tolerance against SEUs. In this scheme, the circuit is duplicated

on three different FPGAs. A voter mechanism is employed to produce the result, assuming

at least two out of the three FPGAs are operating correctly. An external microcontroller

and radiation-hardened PROM complete the circuit. When voting is not unanimous, the

microcontroller reprograms the faulty FPGA using bit-stream data read from the PROM. A

similar paradigm, utilizing radiation-hardened FPGAs as both controllers and processors,

is presented in [73]. Another work utilizing a radiation-hardened ASIC as the voter is

described in [74].

Techniques have also been developed for recovering from SELs, which permanently

damage the FPGA fabric. In this case, portions of a circuit residing in a damaged sec-

tor must be moved to a physically close intact and unused region. In [75] evolutionary

techniques are used to determine how hardware blocks should be placed on an FPGA to fa-

cilitate optimal rearrangement. At design time, a genetic algorithm is used to determine the

most flexible manner in which a circuit can be mapped onto an FPGA, creating simulated

faults to observe needed patterns of rearranging.

Lastly, Xilinx provides a tool for the automatic introduction of TMR protection into

an FPGA circuit [76]. The new circuit takes just over three times the area of the original,

as the circuit is instantiated three times and voter circuitry is also employed. A Masters

Thesis by Jeff Carver at Utah State University is in progress that discusses TMR and other

novel methods for providing FPGA fault protection.

25

Chapter 3

Identifying a Hardware Template

A preliminary step in the development of a software-to-hardware conversion methodol-

ogy is to determine the general form of the hardware architecture and test this form through

manual implementation of an appropriate design. This step is critical to the derivation of

the methodology, as the high-level hardware template can have a large influence on the

architecture performance. In this section an analysis of the iterative repair algorithm from

the perspective of a circuit designer is provided and a suitable hardware architecture frame-

work derived from a software implementation of event scheduling using iterative repair is

discussed. The source code used in this chapter can be found in Appendix A. Iterative

repair specifics were discussed in Chapter 2. This framework will henceforth be classified

as an AMPS accelerator circuit.

In the AMPS accelerator circuit framework, a solution is represented as a string of start

times for v events numbered 0 to v − 1. Events have dependencies, meaning that certain

events must complete before others can start. Each event also has an associated resource

type. Fig. 3.1 depicts a possible event dependency graph. The shape of the event node

designates the resource type. Each event takes one time step to complete. Additional input

Fig. 3.1: A dependency graph for 40 events. Events are represented by the numbered nodes.
Edges indicate dependencies. Each event also uses one of four resource types, designated
by the shape of the node.

parameters needed are a maximum schedule length, an initial temperature, a cooling rate,

26

Table 3.1: Variable Definitions
Notation Meaning
v Number of events
E Number of dependency edges
tr Number of resource types
nmax Maximum allowable number of any resource type
Lmax Maximum allowable schedule latency
b Number of storage bits available on one BRAM (18,432 bits)

and a termination threshold, all of which are provided as inputs to the design. Table 3.1

contains a list of variables to describe these parameters that are used throughout this

chapter. Throughout the architecture, 16-bit integer arithmetic and 32-bit floating-point

arithmetic are assumed. As shown in Fig. 3.2, the architecture is composed of a four-

stage pipeline coupled with five memory banks. Each stage in the pipeline corresponds

to a step in the simulated annealing pseudocode copy, alter, evaluate, and accept. A

global controller coordinates execution and data exchange between the units. An interface

between memory banks and processing stages is provided. An Adjust Temperature module

controls the cooling process. As this is a pipelined architecture, it can only operate as fast

as the slowest stage. To customize the framework for a specific problem size standard design

practices can be employed in the more complex stages to minimize the latency and balance

the pipeline.

3.1 The Memory Sub-System, Data-Routing Module, and Main Controller

The architecture consists of five memory modules, numbered zero through four in

Fig. 3.2, derived from Xilinx FPGA BRAM blocks. Each memory module consists of one

write port and four read ports, all 16 bits wide. Four read ports are needed to facilitate

parallelism in the Evaluate stage. Although Xilinx BRAMs are comprised of two read ports

and two write ports, we have found that VHDL code mapped on to a Xilinx BRAM using

ISE permits only one read and one write port. Thus, a minimum of four BRAMs are used

in the instantiation of each memory bank. If data size exceeds the 18k bits available in a

BRAM, the BRAM usage doubles. Equations to describe BRAM usage are presented in

27

Fig. 3.2: Iterative repair architecture. A pipelined processor with associated memory con-
structs is derived from the simulated annealing pseudocode.

28

the Architecture Summary section. Fig. 3.3 shows how multiple BRAMs can be combined

to build a multi-port memory. In Fig. 3.3a, four BRAMs are used to create a memory with

four read ports. Each BRAM holds an identical copy of the data. In Fig. 3.3b, an attempt

is made to build a memory with four write ports. Once again, each BRAM holds identical

data. Unfortunately, four writes cannot occur simultaneously. The only work-around for

this issue is to clock the memory at four times the rate of the system clock, resulting in the

illusion of simultaneous writing. This effectively decreases the maximum clock frequency

of the circuit by a factor of four, thus negating any gains that could be achieved through

four parallel writes. Because of this, the memory blocks shown in fig. 11 are limited to one

write port each. Each memory bank holds a solution and the score of the solution. At any

point during execution, one memory bank is associated with each of the four processing

stages in the pipeline. The remaining memory block holds the current solution. The main

Fig. 3.3: Multiport memories using BRAMs. In (a), four read ports use four BRAMs. In
(b), four write ports use four BRAMs, but four clock cycles are needed to allow a write
from each port.

controller coordinates the sharing of data between processing stages, tracking the memory

blocks associated with each stage. This coordination is done by managing the multiplexers

that form the interface between memory banks and processing stages. The multiplexing

allows for read and write access between any processing stage and any memory block. The

connections are shown in Fig. 3.4 for read operations and Fig. 3.5 for write operations. Each

29

memory module has four read ports, to permit exploitation of parallelism in the Evaluate

stage, and one write port. Read ports consist of address and data lines, while write ports

consist of address, data, and write-enable lines. Upon completion of a pipeline period,

Fig. 3.4: Multiplexed connections between processing stages and memory modules for read
accesses. Each memory block has four read ports.

the main controller reassigns the memory blocks to the different stages according to the

rules shown in Fig. 3.6. Two different sets of rules are needed, depending on whether the

solution in the Accept stage is rejected (Fig. 3.6a) or accepted as the new current solution

(Fig. 3.6b). The main controller performs global synchronization of pipeline stages. When

each stage completes execution it sends a done signal to the main controller. Once all stages

have completed, the main controller issues a step signal to each stage, indicating that they

can proceed to the next step. The main controller also monitors the temperature and halts

the system when execution is complete.

3.2 The Copy Stage

Since the number of events in the solution is known to be v, the contents of the

solution in the current solution memory bank are copied, word by word, into the memory

bank currently associated with the Copy stage. The latency of this stage (tc) is defined by

30

Fig. 3.5: Multiplexed connections between processing stages and memory modules for write
accesses. Each memory block has one write port.

Fig. 3.6: Method for passing memory block pointers between processing stages when (a) the
solution in the Accept stage is NOT accepted and (b) the Accept stage solution is accepted.

31

Eq. (3.1) as:

tC = v + 1 (3.1)

The step signal comes from the main controller to start the Copy stage. A counter generates

addresses and produces a done signal when all data has been copied. As this stage is basically

a counter, scalability is simply determining how wide the counter need be to count to v.

The Copy stage could be accelerated by either creating additional read and write

ports or by widening the existing ports to allow faster data transfer. Fig. 3.3b and the

associated discussion have already eliminated the possibility of creating additional ports, but

the existing ports can be widened while incurring a substantial cost in BRAM usage. Fig. 3.7

depicts a memory system with a double-wide read (Fig. 3.7a) and write port (Fig. 3.7b) in

addition to standard sized read and write ports. In Fig. 3.7a, a memory bank from Fig. 3.3

is divided into two BRAMs, where even-addressed words are stored in L and odd-addressed

words in H. The low bit of the address becomes a select bit on the output multiplexer. For

wide addresses, the outputs of both BRAMs are concatenated. In Fig. 3.7b, data is written

to either the H BRAM or the L BRAM, depending on the address (odd or even, respectively).

In case of wide writes, data from the wide bus is split and written into both BRAMs. The

box marked E controls the memory write-enable lines accordingly. Implementing such an

acceleration increases BRAM usage by the same factor as the number of words accessed

in a wide access. In Fig. 3.7, wide accesses are twice the width of regular accesses, and

thus use twice the number of BRAMs. Circuits can also be implemented with four-word

or eight-word wide accesses, with proportional increases in BRAM usage. Additionally,

introducing wide ports requires additional multiplexers and control units not needed in the

simple design. Because of the pipelined nature of the AMPS accelerator circuit, the Copy

stage need only be accelerated when it is the slowest stage. Because Evaluate is generally

the most complex stage, the simple Copy model is generally sufficient.

3.3 The Alter Stage

The second stage in the iterative repair pipeline is the Alter stage. One event is selected

32

Fig. 3.7: Memory circuit that allows for double-wide data transfers in addition to word-sized
accesses.

at random from the solution string. The start time of this event is changed to a random

time that falls between zero and the maximum latency. The C code for this function is as

follows:

i = rand() % MAX_EVENTS;
j = rand() % MAX_LATENCY;
sched[i] = j;

The hardware implementation of this stage, shown in Fig. 3.8, could be accelerated by

introducing an additional random number generator and an additional divider, allowing for

maximum concurrency. This additional hardware is not necessary however, as a 19-cycle

integer divider allows this stage to terminate in 21 clock cycles, as shown in Eq. (3.2),

regardless of the size of the solution string.

tAL = 21 (3.2)

The Alter controller is based on a counter that starts when the step signal is received from

the Main Controller, control logic to enable register writing, and a done signal. This stage

is made scalable by changing the constants that represent maximum events and maximum

latency. Additionally, addresses must be wide enough to address all data locations.

33

Fig. 3.8: The Alter stage.

3.4 The Evaluate Stage

The Evaluate stage is the most complex of all the pipeline stages in the iterative repair

architecture. Its job is to compute a numerical score for a potential solution. The score of a

solution to this particular iterative repair problem consists of three components. The first

component is the total time steps consumed by the schedule, promoting shorter schedules.

The second component is the number of times a resource is over-booked on a given clock

cycle. The third component is the sum of the magnitudes of all dependency violations,

which occur when event b depends upon the results of event a, but event b is scheduled

before event a. These three partial scores are summed to produce the solution score.

Each of the three evaluation components described above is implemented as an indi-

vidual pipelined sub-stage. Because the three components of the score can be computed

independently and combined at the end, all three sub-stages can run in parallel, thus saving

substantial clock cycles.

The first sub-stage, termed the Dependency Graph Violation sub-stage, or DGV, is

shown in Fig. 3.9. The original C code from which this sub-module is derived is shown

here:

for (i=0; i<MAX_EDGES; i++)
if (next[source[i]] >= next[dest[i]])

conflicts = conflicts + (next[source[i]] - next[dest[i]]) + 1;

34

Fig. 3.9: The dependency graph violation substage (DGV).

The DGV sub-stage is itself a four-stage pipeline. In the first and second stages, edge

source and destination lists are used to index the solution memory and determine when

parent/child pairs of events are scheduled. Edges are kept in a list of source/destination

pairs. The execution time of the DGV sub-stage is directly proportional to the length of

the dependency list. The third and fourth stages determine the magnitude of the penalty,

if any, to be incurred because a child event is scheduled to begin before a parent event

terminates. DGV execution time is formalized in Eq. (3.3), where three cycles are added to

account for initial pipeline filling.

tDGV = E + 3 (3.3)

The second sub-stage, shown in Fig. 3.10, is the Total Schedule Length sub-stage (TSL).

It computes the total length of the schedule from beginning to end. Events are read one-

by-one, updating the earliest and latest times seen so far. Upon conclusion, the difference

between the earliest and latest times is the schedule length. The C code for this process is

shown here:

for (i=0; i<MAX_EVENTS; i++)
{

if (sched[i]<start) start = sched[i];
if (sched[i]>stop) stop = sched[i];

}
conflicts = stop - start;

35

Fig. 3.10: The total schedule length sub-stage (TSL).

Execution time is proportional to the number of events and is formalized in Eq. (3.4),

with one cycle added for initial pipeline filling.

tTSL = v + 1 (3.4)

The third sub-stage internal to the Evaluate stage is the Resource Over-Utilization stage

(RO). This sub-stage, depicted in Fig. 3.11, is responsible for checking for resource over-

scheduling on every resource for every time step. A two-dimensional matrix keeps track of

the resource utilization of every resource for every time step. This matrix is first cleared,

and then updated by going through the events one by one and determining when each is

scheduled and what resource each uses. When a scheduled event causes a resource over-

utilization, a counter is incremented. The C code for this process is shown here:

for (i=0; i<MAX_RESOURCE_TYPES; i++)
{

for (j=0; j<MAX_LATENCY; j++)
{

t_matrix[j][i] = 0;
}

}
for (i=0; i<MAX_EVENTS; i++)
{

t_matrix[next[i]][resource_usage[i]]++;
if (t_matrix[next[i]][resource_usage[i]] >

resources[resource_usage[i]])
{

36

conflicts++;
}

}

Fig. 3.11: The resource over-utilization sub stage (RO).

Two timing matrices are actually present in the circuit. On a given iteration, one is used

while the other is cleared, removing the additional time consumed by clearing from the stage

latency. Because RO is a four-stage pipeline, stalls must be inserted to prevent read/write

conflicts in the timing matrix. If two subsequent events read from the main memory access

the same location in the timing matrix, the read operation for the second event stalls for

one cycle to allow the write operation for the first event to complete. The best and worst

case execution time for RO are computed using Eq. (3.5) and Eq. (3.6), respectively. The

best case execution time is the slowest performer between the RO pipeline when no stalls

occur and the clearing of the timing matrix not in use. The worst case execution time is

the slowest performer between the RO pipeline when every possible stall occurs and the

clearing of the timing matrix not in use.

tROB = max(v + 3, trLmax + 1) (3.5)

tROW = max(2v + 2, trLmax + 1) (3.6)

TSL, DGV, and RO all have done signals. When all three have completed their tasks,

the three penalty values are weighted and combined to give the total score for the given

schedule. This score is stored in the associated main memory bank. The Evaluate stage

is made scalable by changing the parameters representing events, edges, latency, resource

37

types, and number of resources. The performance of the Evaluate stage is bounded by two

equations, computing the best Eq. (3.7) and worst Eq. (3.8) execution times.

tEB = max(tDGV , tTSL, tROB) (3.7)

tEW = max(tDGV , tTSL, tROW) (3.8)

While the Evaluate stage has been parallelized at a high level into RO, TSL, and DGV sub-

stages, one might advocate increased low-level parallelism as well through loop unrolling.

For example, an attempt might be made to speed up the RO sub-stage by replicating the

circuit shown in Fig. 3.11, mapping half of the iterations to each replication, and combining

results. Unfortunately, this would necessitate sharing the timing matrix across all unrolls

and requiring simultaneous data write operations. As discussed previously, increasing the

number of write ports above the one permitted by VHDL mapped by Xilinx ISE onto

BRAMs is not possible without serious degradation to performance, this approach is not

advocated.

3.5 The Accept Stage and the Adjust Temperature Module

The Accept stage determines whether to accept the next solution as the new current

solution. If the next solution is better than the current solution, the next solution is accepted

unconditionally. A solution that is worse than the current solution can also be accepted

with a computed probability, defined in Eq. (2.2). The code for this process is shown below.

delta_e = cur_value next_value;
p = exp(((float)delta_e)/temperature);
if ((rand() / (float) RAND_MAX) < p)
{

for (i=0; i<MAX_EVENTS; i++)
schedule[i] = next_schedule[i];

cur_value = next_value;
}

38

An architecture that supports this computation is shown in Fig. 3.12. This stage

mixes floating-point and integer arithmetic, thus necessitating the integer-to-float conversion

module shown. The cur value and next val variables are integers, while temperature and

RAND MAX are 32-bit floating point numbers. The current score and the next score

are read from their respective memory banks. The temperature is provided by the Adjust

Temperature stage. The random number generator and divider produce a number between

zero and one that is compared against the acceptance probability (p) to determine whether

or not the new solution should be accepted. The Accept stage needs no modification to

Fig. 3.12: The Accept stage.

become scalable. The input is always two 16-bit integers and the output is a single bit

indicating whether the solution should be accepted. With an integer adder taking one

cycle, a floating point divider taking 19 cycles, the exponential unit (implemented as a

look-up table) taking one cycle, integer-to-floating point conversion taking six cycles, and

the random number generator taking one cycle, the latency of this stage is a constant,

39

defined in Eq. (3.9).

tAC = 54 (3.9)

The Adjust Temperature module is a simple but critical module. The temperature is used

to compute the probability of acceptance in the Accept stage and by the main controller to

determine when execution is complete. There are many options for implementing a cooling

schedule for a simulated annealing problem. In this case a popular geometric cooling rate

is employed, although this could easily be replaced with a different function deemed more

appropriate for a specific application. The architecture for the Adjust Temperature module

is shown in Fig. 3.13. The current temperature is stored in a register. When the step

signal is received, the temperature is multiplied by the constant cooling rate, generally

a floating point value slightly less than one. This cooling rate allows the temperature

to decrease slowly and geometrically, permitting the algorithm hundreds or thousands of

iterations to discover better solutions. As this module is not directly related to the solutions

Fig. 3.13: The Adjust Temperature module.

in progress, no changes are needed to make this module scalable. The module performance

is characterized by Eq. (3.10).

tAT = 12 (3.10)

3.6 Summary of the Architecture and System Performance Characterization

A pair of equations that describes the best (tB) and worst (tW) performance in time

of the architecture is shown in Eq. (3.11) and Eq. (3.12), where the number of stalls in the

40

RO sub-stage of the Evaluate stage cause the difference between tEB (best-case evaluate

time) and tEW (worst-case evaluate time).

tB = max(tC , tAL, tEB, tAC , tAT) (3.11)

tW = max(tC , tAL, tEW , tAC , tAT) (3.12)

Because the architecture is a high-level pipeline, execution can only proceed as fast as

the latency of the slowest stage. Fig. 3.14 shows best-case and Fig. 3.15 shows worst-case

possible performances of the architecture for problems consisting of a 32-cycle maximum

schedule latency, four resource types, a maximum of five resources of each type, up to 1000

events, and up to 1500 edges. In addition to predicting processor latency, equations can

Fig. 3.14: Best-case AMPS accelerator performance.

also be derived to describe FPGA resource utilization. The physical sizes of the processing

stages change very little from problem to problem, and are not interesting to quantify. The

amount of memory usage, however, can vary substantially. Total memory usage is the sum

of the usage of five different memory modules and its estimation is computed as follows.

First, the main memory always consists of five memory banks, each with four read ports

41

Fig. 3.15: Worst-case AMPS accelerator performance.

and a single write port. Data width is 16 bits. BRAM memory usage for main memory is

described by Eq. (3.13).

BM = 20d16v + 1
b

e (3.13)

The timing matrix in the RO sub-stage of the Evaluate stage also uses BRAMs. Remember

that two timing matrices exist, operating together as a ping-pong buffer. RO BRAM usage

is described by Eq. (3.14).

BT = 2d16trLmax

b
e (3.14)

The edge list employed by the DGV sub-stage also uses BRAMs. There is an entry in the

list for every edge, with every edge consisting of a source and a destination event identifier.

Thus, each entry must be wide enough to hold the twice the length of the largest possible

event identifier. DGV BRAM usage is described in Eq. (3.15).

BT = 2d2Edlog2ve
b

e (3.15)

These equations to define processor performance in speed and area are compared with

measured results of various problems later in this chapter.

42

3.7 Differences between Software and Hardware Implementations

At this stage a discussion on a significant difference between the operation of the IR al-

gorithm in hardware versus software is presented. Because of the four-stage pipeline present

in the AMPS accelerator circuit, there is a difference between the simulated annealing soft-

ware and the custom hardware designs. In software, simulated annealing keeps track of

only two solutions at any time the current solution and a potential next solution. In the

pipelined custom hardware design, however, what should be done with the solutions in the

Copy stage, the Alter stage and the Evaluate stage when a new solution is accepted by the

Accept stage? In the sequential software implementation, this issue does not exist, as there

is no high-level pipeline with multiple solutions in progress to worry about. This prob-

lem can be solved in the hardware implementation in one of two ways, either (1) flush the

pipeline, which is consistent with the software version of simulated annealing, or (2) simply

ignore the issue. In this architecture, we opted for solution two because of its simplicity.

Flushing the pipeline would require additional circuitry to unconditionally reject outdated

solutions. However, even though the solutions in the Copy, Alter, and Evaluate stages were

created from a solution that is no longer the current solution, they are still valid potential

solutions and can be treated as such. This saves the additional circuitry and delays needed

to flush the pipeline.

3.8 Enhancements through PDR and TMR

3.8.1 PDR applied to the Evaluate sub-system

The AMPS accelerator circuit can schedule different sets of events and dependencies

with different sets of constraints like available resources, available time, etc. The results

of the three Evaluate sub-stages (RO, TSL, and DGV) may need to be weighted differ-

ently from graph to graph in order to reflect these changing constraints. Partial Dynamic

Reconfiguration (PDR) can be employed to replace only the Evaluate module, saving sub-

stantial reconfiguration time over what would be required to reconfigure the entire FPGA.

A dynamic reconfigurable Evaluate stage has been tested targeting an ML402 Development

43

board with a XilinxVirtex 4 SX35 FPGA onboard using Early Access Partial Reconfigura-

tion (EAPR) [77], a partial reconfiguration methodology from Xilinx.

A block diagram of the PDR system setup is shown in Fig. 3.16. The Evaluate stage

is separated from the main processor and designed as a top module and placed in a Par-

tially Reconfigurable (PR) region to permit reconfiguration. The communication between

the evaluate module and the main processor is realized using slice based bus macros. Each

bus macro has the capability of communicating eight bits of data. OPB HWICAP, which

is a wrapper for the Internal Configuration Access Port (ICAP), is used to perform recon-

figuration. The interface to the outside world is done using the OPB UART. The initial

configuration file and the partial bit streams are stored in a compact flash card which is

controlled by the SystemACE chip on the ML402 evaluation board. An OPB Timer is also

included in the system which can be used to measure the number of clock cycles needed to

execute any routine. All the peripherals are controlled by an on-FPGA MicroBlaze soft core

processor and all communication between the peripherals is done through the on-chip pe-

ripheral bus (OPB). The PR region can hold one of two reconfigurable modules, evaluate 1

and evaluate 2. Evaluate 1 is as described previously. Evaluate 2 has the same architec-

ture, with different weightings of two of the three penalties: sRO is multiplied by two and

sTSL is divided by two. In other words, more importance is given to avoiding resource

over-utilization and less to total schedule length. As discussed previously, different weight-

ings can apply to different situations, dictated by mission parameters and environmental

changes.

3.8.2 TMR applied to the entire AMPS accelerator circuit

Space is an extremely noisy environment. High-energy particles can impact an elec-

tronic circuit, causing errors in logic states. For example, a particle can impact a transistor

and temporarily switch a logic one to a logic zero or a logic zero to a logic one. This

transient error is called a Single Event Upset (SEU) and the occurrence of such faults must

be handled by the circuit. For FPGAs, SEUs can also occur in the configuration memory.

Errors in the configuration memory are repaired by periodically reloading the FPGA with

44

Fig. 3.16: System block diagram for partial reconfiguration of Evaluate module.

the original fault-free configurations. A standard method for SEU protection is Triple Mod-

ular Redundancy (TMR) [78]. In TMR, three copies of a circuit are implemented and the

results are passed through a majority voter to ensure correct results. TMRTool, provided

by Xilinx, automatically converts designs to a TMR state and replaces any shift registers

used [76] to remove components that use configuration frames for memory. This prevents

the accumulation of SEUs in the configuration memory by reloading the frames as discussed

earlier. TMRTool has been shown to provide robust protection for SRAM FPGAs against

SEUs [79–81]. This tool is employed to generate a fault-tolerant version of the AMPS

accelerator circuit.

Xilinx also offers a line of radiation-hardened FPGAs for military and aerospace appli-

cations (Virtex II-Q and Virtex II-Q Pro series, QV4 etc.). These devices have very similar

performances to their non-rad-hard counterparts and provide protection against Total Ion-

ization Dose. Combining TMR with a radiation-hardened part will provide protection from

SEUs and accumulated radiation.

3.9 Performance of the AMPS Accelerator Circuit

The parameterized nature of the AMPS accelerator circuit allows a customized version

to be instantiated on an FPGA for a wide range of problem sizes. The Xilinx TMR tool

45

discussed in Chapter 2 was also employed to verify that fault protection is indeed possible

for these circuits. Fig. 3.17 to Fig. 3.20 show resource usage on the FPGA for ten randomly-

generated example event dependency graphs. The number of events varies from 41 to 981,

the number of edges varies from 51 to 1,317, and the maximum latency allowed for the

schedule varies from 32 to 256. Resource utilization is divided into lookup tables (LUTs)

(Fig. 3.17), flip-flops (Fig. 3.18), embedded block RAM modules (BRAMs) (Fig. 3.19), and

embedded DSP48 signal processing units (Fig. 3.20) for both simple and TMR-protected

circuits. Power usage, estimated using the Xilinx XPower tool, is also provided for both

circuit types in Fig. 3.21 and ranges from 569 mW to 892 mW. This is significantly lower

than the PowerPC 750, with quoted power usage of less than 5 W [82]. It can be seen

Fig. 3.17: Resource usage (LUTs) for 10 example problems.

that resource usage increases by at least a factor of three across all resource types for all

designs that use TMR. This is to be expected, as the base circuit is triplicated, shift-registers

extracted, and voters added. Power usage increases by about 50 percent on average for a

TMR design, as power consists of both quiescent and dynamic components. The target

device for these experiments was the Xilinx V4SX35, which consists of 30,720 LUTs, 30,720

flip-flops, 192 DSP48 units, and 192 BRAM blocks. All example designs easily fit on this

chip.

46

Fig. 3.18: Resource usage (flip-flops) for 10 example problems.

Fig. 3.19: Resource usage (BRAMs) for 10 example problems.

47

Fig. 3.20: Resource usage (DSP48s) for 10 example problems.

Fig. 3.21: Power usage for 10 example problems.

48

Table 3.2: Reconfiguration Time of Evaluate and AMPS Accelerator Circuit
Reconfigurable No. of bits in Time (in ms) Time (in ms)
Module the Bitstream SystemACE On-chip BRAM
Evaluate 498,040 220 19.9
AMPS Accelerator Circuit 2,245,008 830 N/A

Table 3.3: Architecture Resource Usage of Fault Injected Circuits
LUTs Flip-Flops BRAMs DSP48s
Basic TMR Ratio Basic TMR Ratio Basic TMR Ratio Basic TMR Ratio
3,057 9,888 3.23 3,837 11,589 3.02 26 78 3.00 5 15 3.00

The results of the partially and dynamically reconfigurable AMPS accelerator circuit

are shown in Table 3.2. The results of the partially and dynamically reconfigurable AMPS

accelerator circuit are shown in Table 3.2. The time to reconfigure evaluate 1 and evaluate 2

is same as the size of the bit-stream is the same for both modules which lie in the same

PR region. The time to reconfigure the entire AMPS accelerator circuit is four times more

than just reconfiguring the evaluate module. The final column in Table 3.2 represents the

time to reconfigure when the bit-stream is stored in on-chip BRAMs. Storing bit-streams

in on-chip BRAMs rather than off-chip on a compact flash card achieves a speedup of 11

times. The bit-stream of the entire AMPS accelerator circuit is too big to fit in the on-chip

BRAMs.

Table 3.3 and Table 3.4 present AMPS accelerator circuit fault protection results from

the fault injector. A 100-node, 99-edge graph is taken as an example. The results show

that TMR AMPS accelerator circuit greatly reduces the number of sensitive bits when

compared to the unprotected AMPS accelerator circuit by a factor of 1800 times. The main

restriction with using TMR is the additional area cost required in order to achieve such high

protection. Fig. 3.22 compares the execution of the custom architectures running on the

Table 3.4: Sensitivity of Fault Injected Circuits
Number of Configuration Bits Number of Sensitive Faults Percent of Sensitive Bits
in Partial Configuration Area in AMPS Accelerator Circuit
Basic TMR Ratio Basic TMR Ratio Basic TMR Ratio
4,153,860 8,353,176 2.01 126,048 68 0.0005 3.03 0.0008 0.0003

49

FPGA versus identical algorithms running on a PowerPC 750 processor with floating point

coprocessor. Notice that the y-axis in Fig. 3.22 is a logarithmic axis. As the BAE Systems

RAD750 processor is extremely expensive (hence not affordable by an academic institution),

a cycle-accurate PowerPC 750 emulator from Virtutech was employed to obtain timing data.

For space applications, power usage is a significant concern. Since power usage is directly

proportional to clock speed, clock speeds are generally confined to 100 MHz or 150 MHz

for most applications. Therefore, the comparisons in Fig. 3.22 assume a frequency of 100

MHz for all devices. Both the PowerPC and the custom circuits could be clocked faster, but

comparative results would be identical. Over the range of test cases, it can be seen that the

custom circuits out-perform the PowerPC by roughly 30 to 90 times. Fig. 3.22 also includes

best and worst-case execution times for each custom circuit. Finally, the results of the

Fig. 3.22: Execution times for 10 example problems on both custom hardware and PowerPC
750.

hardware circuit are compared with those of the algorithm running in software. Fig. 3.23

compares a 100 event, 99 edge graph scheduled in both hardware and software. In both

cases, the experiment was repeated 20 times and the results averaged. It can be seen from

Fig. 3.23 that both methods follow the traditional simulated annealing curve. However, the

hardware version actually performs better initially, with the software version catching up

50

towards the end of execution. The difference in functionality of the hardware version is due

to the lack of flushing in the pipelined architecture when a new solution is accepted.

Fig. 3.23: Hardware vs. software results comparison.

51

Chapter 4

Architecture Derivation Methodology

This chapter describes a novel approach to providing a path from C code specification

to efficient hardware implementation. Fig. 4.1 shows design steps that could be followed

both by software engineers to produce executable code and hardware engineers to produce

custom hardware. In both cases, the starting point is a conceptual algorithm, usually

expressed in written English, which describes the general set of operations that needs to

be performed. This written description can be formalized as a control data flow graph

(CDFG) that details the operations that need to be performed using building blocks such

as add, subtract, multiply, load, store, etc. This is step does not usually occur in software

or hardware design, but an implementation-independent CDFG can be produced for any

algorithm.

At this point, Fig. 4.1 shows branching paths for software and hardware design. The

software path calls for sequentialization of the CDFG into a pseudocode representation.

Because traditional software is targeted for execution on a sequential machine (instructions

are executed in order, one at a time), an ordering must be applied to the CDFG. Some order

is imposed by connections in the CDFG, but otherwise the ordering is arbitrary. Thousands

of permutations of pseudocode may exist for a single CDFG. Once the pseudocode has been

generated, the next step for a software engineer is to write the actual code in a chosen

programming language such as C, C++, or Java. This code is generally sequential, following

the same flow as the pseudocode. Compilers, assemblers, and linkers are then employed to

produce the final executable file. On the other hand, a hardware designer takes the CDFG

and breaks it into a hierarchy of modules. A hand-drawn or CAD-generated drawing of

the hierarchy is generally developed at this point. A hardware description language (HDL),

generally Verilog or VHDL, is chosen, and the hierarchical modules are described, simulated,

52

Fig. 4.1: Typical steps for hardware and software design.

and debugged. Synthesis and place-and-route tools are then employed to generate the final

bit-stream that represents the verified circuit.

While most of the software-to-hardware tools described in chapter 2 are proprietary

and underlying algorithms are not publicly available, these tools generally appear to follow

an algorithm shown by the dotted lines in Fig. 4.1. High-level source code is translated di-

rectly into HDL or directly into a netlist format. While this technique has proved marginally

successful, there are inherent weaknesses in this approach. Primarily, the flexibility of the

software program is greatly reduced from that of the initial CDFG. The sequentializa-

tion and language-specific restrictions present in code impose unnecessary restrictions on

hardware design. The ideal path for hardware derivation from software code would be to

backtrack in Fig. 4.1 from software program to CDFG and then proceed in an automated

manner down the hardware design path. A novel methodology, entitled SATH (Simulated

Annealing to Hardware) is proposed which follows this algorithm.

53

In the previous chapter, a hardware architecture template was discussed for the simu-

lated annealing architecture. This template is employed as part of the architecture deriva-

tion design flow. Fig. 4.2 shows a block diagram of the steps needed to translate high-level

software code into a hardware representation. The remainder of this chapter will describe

each step in Fig. 4.2 in detail.

4.1 Functional Block Partitioner

Given the simulated annealing pseudocode shown in Fig. 2.8 and the hardware archi-

tecture template shown in Fig. 3.2, the task of the Functional Block Paritioner (FBP) is

to perform an initial mapping of software functions to hardware blocks. There is generally

a one-to-one correspondence between software and hardware. In other words, a software

function becomes a hardware block. Software functions such as copy, alter, evaluate, accept,

and adjust temperature are mapped to equivalent hardware blocks.

4.2 Constant Extractor

Constants describing parameters of the simulated annealing algorithm are identified

and extracted from the source code. A simulated annealing code contains parameters such

as initial temperature, cooling rate, and cutoff level, as seen in the pseudocode in Fig. 2.8.

These parameters are needed by the main hardware controller, the Accept stage, and the

Adjust Temperature module shown in Fig. 3.2. The size of the solution array is also ex-

tracted for use by the Copy stage, the Alter stage, and the Evaluate Stage.

4.3 GCC

Once the source code has been partitioned, portions to be fed to the SAM stage need to

be reduced to a control data flow graph. The first step is to use an off-the-shelf compiler like

GNU GCC to produce a C-like three-address single-assignment code. An example of this

conversion is shown in Fig. 4.3. This step is important for two reasons. First, three-address

code removes any operation chaining within a single instruction. Any statement has at

most three simple terms, with a maximum of two to the right of an equal sign in an assign

54

Fig. 4.2: Block-level diagram for translating simulated annealing C code to hardware.

55

statement. This makes the code much easier to interpret. Second, single-assignment code

means each variable is found on the left of an assignment statement at most one time. This

greatly simplifies the task of deriving data-flow patterns and determining variable liveness.

Fig. 4.3: Example of source C code and comparable 3-address single assignment code.

4.4 CDFG Generator and Optimizer

As described at the beginning of this chapter, the software code must be generalized

to a CDFG, as the CDFG is the branching point between software and hardware design.

To derive a CDFG, both arbitrary serialization of code and programming language-based

restrictions must be removed. Fig. 4.4 shows an example of three-address code translated

into a preliminary CDFG with serialization removed. The CDFG shown in Fig. 4.4 must

then be further generalized by removing programming language-specific constructs. This

includes loop unrolling and removal of base-plus-offset computations. Fig. 4.5 shows an

56

Fig. 4.4: Obtaining a CDFG from 3-address single assignment code.

example of this simplification. Specifically, the return node is removed and four distinct

base-plus-offset computations are removed (identified as cast-multiply-cast-add chains). In

addition to the modifications already described, three other changes are made to the CDFG

to prepare it for processing by the SAM stage. First, loops are unrolled completely. The

SAM algorithm only supports loops where the iteration count is a compile-time constant.

Second, if-then-else constructs are redefined for predicative execution. Essentially, both

true and false branches of an if-then-else construct are computed and the correct output is

chosen through a selection operation. Third, constant expressions are simplified. When loop

unrolling takes place, the loop iterator becomes a constant in each iteration. If both inputs

to an arithmetic node are constants, that operation can itself be reduced to a constant.

A more-complex example showing loop unrolling, if-statement conversion, and constant-

expression simplification is shown in Fig. 4.6. The loop is unrolled four times. Notice

that the non-optimized CDFG in Fig. 4.6 consists of six basic blocks, while the optimized

version is a single block. All control flow has been removed from the graph, reducing the

57

Fig. 4.5: Optimization of a CDFG.

classification from CDFG to data flow graph (DFG). At this point, the DFG is ready to be

passed to the SAM algorithm.

4.5 Area and Timing Metadata

The task of a schedule and map algorithm used for architecture generation is to identify

an (optimal) architecture that meets both timing and resource constraints. In this section,

a method for quickly estimating FPGA resource utilization is described. Additionally, a

currency is introduced for dynamically comparing relative resource costs between functional

units.

4.5.1 Estimating Resource Usage

Xilinx ISE is a tool for mapping high level hardware designs written using VHDL,

Verilog, or schematic onto FPGAs and other hardware devices. The basic building block

of an FPGA is the look-up table (LUT). In Xilinx FPGAs, two LUTs and associated logic

58

Fig. 4.6: Optimization of a more-complex CDFG. Loop unrolling and predicative execution
are represented.

form what is called a slice. Xilinx FPGAs also contain embedded 18 kb block RAM units

(BRAMs) and embedded multiply-accumulate ASICs (DSP48s). One of the chief concerns

of a hardware designer is ensuring that the hardware design will fit on a specific chip with

a finite number of resources.

Actual resource usage can be obtained from ISE by taking a design to the place-and-

route stage. However, running the Xilinx tools on a large design is often time-consuming.

Complex designs can take several hours to progress through the steps from synthesis to

placing and routing. A mechanism for estimating resource utilization and permissible clock

speeds without running these tools would greatly decrease design time.

One possible method for performing this estimation is to use curve fitting. Essentially,

each type of design component is modeled for several different sizes of data inputs. Each

model is sent through the Xilinx tool chain and final utilization values are determined. In

this manner, a set of points are generated, where each point consists of an independent data

parameter and dependent utilization parameter. A handful of these points scattered across

the architecture space can be used as an input to a curve-matching algorithm (available in

59

Table 4.1: Measured Resource Utilization and Clock Speed for Discrete Sizes of Integer
Adders

Data Width LUTs FFs Maximum Clock Freq. (MHz)
1 1 1 1,381
2 2 2 1,381
4 4 4 712
8 8 8 676
12 12 12 619
16 16 16 571
24 24 24 494
32 32 32 436

Matlab), in which a high-order polynomial equation can be derived which approximates the

curve represented by the design points.

For example, consider an integer addition unit. For simplicity, it is assumed that the

adder takes in two n-bit numbers and produces a single n-bit output, registering the output

and consuming a single clock cycle. The goal is to derive functions that relate data width (n)

to resource consumption and maximum clock speed. To determine these functions, several

different sizes of adders are instantiated using Xilinx ISE, noting the post-place-and-route

utilization statistics for each one, including resources used and maximum allowable clock

frequency. This data is shown in Table 4.1. Using this data, best-fit equations can be

derived for LUT and flip-flop utilization and maximum allowable clock frequency. A fifth-

order polynomial, generated by Matlab, is deemed sufficient for curve approximation. This

fifth-order polynomial is shown in Eq. (4.1).

y = C5n
5 + C4n

4 + C3n
3 + C2n

2 + C1n + C0 (4.1)

The goal is to find the value of all coefficients (Cx). Using the Matlab curve-fitting function,

the best-fit 5th-order polynomial for LUT usage in an integer adder is shown in Eq. (4.2).

Coincidentally, the same equation also applies for flip-flop usage.

y = 0n5 + 0n4 + 0n3 + 0n2 + 1.0n + 0 (4.2)

60

This equation can then be used to predict LUT and flip-flop utilization for an integer adder

of arbitrary size. The correlation between the measured and computed values is shown in

Fig. 4.7. In both cases it is a perfect match. A similar equation and plot can be generated

Fig. 4.7: LUT and flip-flop consumption for integer adders.

for maximum clock frequency. These are shown in Eq. (4.3) and Fig. 4.8, respectively.

y = −0.00122n5 + 0.110n4 − 3.73n3 + 58.6n2 + 434.0n + 1850 (4.3)

This technique can be repeated for any module in which resource utilization is a function

of data width. Table 4.2 shows the data that has been derived for integer multipliers of

varying data widths, once again with a single-cycle clock latency. In addition to LUTs

and flip-flops, integer multipliers can use DSP48 resources on the FPGA. Equations are

derived for LUT utilization (Eq. (4.4)), flip-flop utilization (Eq. (4.5)), DSP48 utilization

(Eq. (4.6)), and maximum clock frequency (Eq. (4.7)).

y = 0n5 − 0.00210n4 + 0.0669n3 − 0.911n2 + 4.62n− 2.92 (4.4)

61

Fig. 4.8: Maximum clock frequency for integer adders.

Table 4.2: Measured Resource Utilization and Clock Speed for Discrete Sizes of Integer
Multipliers

Data Width LUTs FFs DSP48s Maximum Clock Freq. (MHz)
1 1 1 0 1381
2 2 2 0 1381
4 7 4 0 461
8 0 0 1 277
12 0 0 1 277
16 0 0 1 277
24 0 24 3 128
32 0 32 3 128

62

y = 0n5 − 0.00434n4 + 0.135e− 1n3 − 1.66n2 + 7.35n− 5.86 (4.5)

y = 0n5 − 0n4 + 0.0101n3 − 0.124n2 + 1.05n− 0.174 (4.6)

y = 0n5 + 0.0625n4 − 2.90n3 + 59.3n2 − 536n + 1990 (4.7)

Fig. 4.9, Fig. 4.10, Fig. 4.11, and Fig. 4.12 show the quality of the estimation for LUTs, flip-

flops, DSP48 units, and maximum clock frequency, respectively. Estimations are generally

very accurate. A set of equations for multiplexers of different widths can also be derived.

Fig. 4.9: LUT utilization for integer multiplier.

The number of inputs to a traditional multiplexer is generally a power of 2 (2, 4, 8, 16, 32,

etc.). In many cases, not all input lines may be used. In theory, creating a multiplexer with

31 inputs should use the same resources as one with 32. Due to suboptimal analysis by the

Xilinx tools, however, this was found to be an incorrect assumption in general. Measured

LUT utilization data for 4-to-1 and 8-to-1 multiplexers is given in Table 4.3 and Table 4.4,

respectively. The equations for modeling the LUT usage and maximum clock frequency of

4-to-1 multiplexers are given in Eq. (4.8) and Eq. (4.9), respectively. Similar equations for

63

Fig. 4.10: Flip-flop utilization for integer multiplier.

Fig. 4.11: DSP48 utilization for integer multiplier.

64

Fig. 4.12: Maximum clock frequency for integer multiplier.

Table 4.3: Measured Resource Utilization and Clock Speed for a 4-to-1 Multiplexer
Data Width LUTs Maximum Clock Freq. (MHz)
1 2 1377
2 4 1377
4 8 1377
8 16 1377
12 24 1377
16 32 1377
24 48 1377
32 64 1377

Table 4.4: Measured Resource Utilization and Clock Speed for an 8-to-1 Multiplexer
Data Width LUTs Maximum Clock Freq. (MHz)
1 4 975
2 8 975
4 16 975
8 32 975
12 48 975
16 64 975
24 96 975
32 128 975

65

8-to-1 multiplexers are given in Eq. (4.10) and Eq. (4.11).

y = 0n5 + 0n4 + 0n3 + 0n2 + 2.0n + 0 (4.8)

y = 0n5 + 0n4 + 0n3 + 0n2 + 0n + 1380 (4.9)

y = 0n5 + 0n4 + 0n3 + 0n2 + 4.0n + 0 (4.10)

y = 0n5 + 0n4 + 0n3 + 0n2 + 0n + 975 (4.11)

The performance of the estimation for the LUT utilization for 4-to-1 multiplexers is shown

in Fig. 4.13. Fig. 4.14 shows similar data for 8-to-1 multiplexers. Estimated and measured

values in all cases are an exact match. After characterization of several iterative repair

Fig. 4.13: LUT utilization for 4-to-1 multiplexers.

and other simulated annealing algorithms, a set of basic modules has been identified for pa-

rameterization. These modules are 2-to1, 4-to-1, and 8-to-1 multiplexers, registers, random

number generators (RNG), constant generators, control units, adders, subtractors, multipli-

66

Fig. 4.14: LUT utilization for 8-to-1 multiplexers.

ers, dividers, modulus operators, absolute value (ABS) operators, and greater than, greater

than or equal, less than, less than or equal, equal and not equal comparators. All modules

are assigned a latency of one clock cycle, with the exception of the divider and modulus

arithmetic units, which take 19 cycles, and the multiplexers, which are not clocked.

Now that the basic building blocks have been parameterized, the next question is to

determine how well this method will estimate circuits comprised of two or more of these

blocks in combination. In theory, resource consumption should be a roughly additive prop-

erty, while maximum clock frequency should be close to that of the worst-performing block.

As a simple example the circuit shown in Fig. 4.15 is considered. Using the blocks described

Fig. 4.15: Simple circuit with an addition operation followed by a squaring operation.

above, the circuit of Fig. 4.15 takes two clock cycles to produce a result. This circuit can

67

Table 4.5: Computed vs. Actual Values for Simple Add/Multiply Circuit
Data LUT Usage Flip-Flop Usage DSP48 Usage Max. clock Freq.
Width (MHz)

Est Act % Est Act % Est Act % Est Act %
Err Err Err Err

4 11 13 15.4 8 8 0 0 0 0 461 354.86 29.9
8 8 8 0 8 8 0 1 1 0 277 254.13 9.0
12 12 12 0 12 12 0 1 1 0 277 254.13 9.0
16 16 16 0 16 16 0 1 1 0 277 254.13 9.0
24 24 24 0 48 48 0 3 3 0 128 111.16 15.1

be implemented with various data bit widths. Table 4.5 shows the results for bit widths

ranging from 4 to 24. Notice that resource usage predictions are identical to the actual post-

place-and-route values for all but one entry. The predicted maximum clock frequencies, on

the other hand, are substantially higher than the actual values, especially in circuits with

smaller data widths. The reason for this is that maximum clock frequency is determined

by two parameters: (1) the number of LUTs on the critical path and (2) the total physical

distance between LUTs on this path. For a given VHDL implementation of a module, the

number of LUTs and other resources remains constant. However, the transmission delay

between resources is a function of the place-and-route tool. This delay can vary drastically,

depending chiefly on available chip resources. As a chip fills up, individual modules can

no longer be kept physically close. Needed resources may be scattered widely across the

chip. As the point of this resource estimation is to avoid the need of performing synthesis

or place-and-route, estimating clock frequency is not feasible. Rather, the responsibility lies

with the module designer to create a library of modules with roughly similar performance.

As another example, consider the circuit depicted in Fig. 4.16. Here, multiplexers are

added to the design in Fig. 4.15. The resource utilization statistics are shown in Table 4.6.

The actual resource utilization in this example is close to the estimated values, especially

as the data width is increased.

Finally, a real-world circuit taken from the Alter stage of a typical simulated annealing

architecture is considered. This circuit, shown in Fig. 4.17, consists of a random number

generator, a constant generator, a modulus operator, a control unit, a 2-to-1 multiplexer,

68

Fig. 4.16: Multiplexed add/multiply circuit.

Table 4.6: Resource Utilization for Multiplexed Add/Multiply Circuit
Data Width LUT Usage Flip-Flop Usage DSP48 Usage

Est Act % Err Est Act % Err Est Act % Err
4 21 25 16.0 8 8 0 0 0 0
8 34 32 6.3 8 8 0 1 1 0
12 48 48 0 12 12 0 1 1 0
16 64 64 0 16 16 0 1 1 0
24 97 96 1.0 49 49 0 3 3 0

and four registers. The memory bank shown in the figure is technically external to the

circuit and is not included in the resource estimation. Data width for this example is

12 bits. Table 4.7 details estimated versus actual resource usage for the circuit shown in

4.17. As maximum error is 2.7%, the estimation method is deemed valid. In conclusion,

this method of approximating FPGA performance performs well for estimating resource

utilization. It can be concluded that resource usage is generally an additive property for

more-complex circuits built from simple parameterized blocks. Timing performance, on the

Table 4.7: Resource Usage for the Circuit Shown in 4.17
Module Number Estimated Resource Usage

LUT Flip-Flop DSP48
Random Number Generator 1 1 15 0
Constant Generator 1 9 12 0
2-to-1 Mux 1 12 0 0
Modulus Operator (Divider) 1 303 555 0
Control Unit 1 20 36 0
Register 4 0 48 0
Total Estimated Usage 342 666 0
Actual Usage 333 668 0
Error 2.7% 0.3% 0%

69

Fig. 4.17: An example architecture from a simulated annealing Alter stage.

70

Table 4.8: Resource Usage Data for Four Versions of a Floating-Point Multiplier
Version LUT Usage Flip-Flop Usage DSP48 Usage
fmul1 641 698 0
fmul2 545 519 1
fmul3 135 224 4
fmul4 115 189 5

other hand, is not so easy to characterize. In any pipelined or clocked circuit, the maximum

clock frequency is constrained by the worst-case critical path between any two registers in

the circuit. In theory, the lowest maximum allowable frequency of all of the simple blocks

in a circuit would be the maximum clock frequency of that circuit. However, because of

competition for available resources in complex circuits, these circuits consistently perform

worse than the individual components.

4.5.2 Determining Relative Resource Costs

Now that an efficient method has been described for estimating module costs, the

question arises as to how to assign an area cost to a module. For example, Table 4.8 contains

resource usage data for four real-world implementations of a single-precision floating-point

multiplier. All four versions have a latency of eight clock cycles. Looking at these four

implementations, it is impossible to determine which one is the most costly. Version one

uses the most LUTs and flip-flops, but it uses the fewest DSP48s. A common currency is

needed which takes into account the relative cost of LUTs, flip-flops, DSP48 ASICs, and

BRAMs in a specific situation. This unit of currency is henceforth designated the RALF

(RAMs, ASICs, LUTs, flip-flops).

The value of a RALF changes dynamically throughout the module instantiation phase

of circuit design. RALFs are computed by summing the ratios of needed resources to

available resources across all resource types. In other words, the cost of using a particular

type of resource is a function of both the number of that kind of resource needed and the

number available. The formal definition of a RALF is shown in Eq. (4.12) and Eq. (4.13),

where U is resource usage in RALFs, r is BRAMs, a is DSP48s, l is LUTs, f is flip-flops,

71

Table 4.9: Comparisons Using RALFs for the Multipliers from Table 4.8
Version LUT Flip-Flop DSP48 RALFs when available LUTs/FFs/DSP48s are

Usage Usage Usage 1000/1000/20 1000/600/50 1000/1000/10
fmul1 641 698 0 1.339 INF 1.339
fmul2 545 519 1 1.114 1.430 1.164
fmul3 135 224 4 0.559 0.663 0.759
fmul4 115 189 5 0.554 0.593 0.804

Table 4.10: RALF Comparisons for an Adder and a Multiplier
Version LUT Flip-Flop DSP48 RALFs when available LUTs/FFs/DSP48s are

Usage Usage Usage 1000/1000/20 1000/600/50 1000/1000/10
add 24 24 0 0.048 0.072 0.048
mul 1 25 3 0.176 0.057 0.326

ni is number of resources of type i needed, and pi is number present. Note that the cost is

infinite if adequate resources of any type are not available.

Ui =
ni

pi
if ni ≤ pi else Ui = ∞; iε{r, a, l, f} (4.12)

U =
∑

iε{r,a,l,f}

Ui (4.13)

In Table 4.9, the four multipliers from Table 4.8 are compared using RALFs, computed

for three different cases of available resources. The lowest-cost module in each situation is

shown in bold. Notice that multiplier 1 cannot be implemented under one set of constraints.

RALFs can also be used to compare different types of modules. For example, say a decision

needs to be made between implementing an integer adder and an integer multiplier, either

of which is sufficient to allow the circuit to meet timing constraints. The correct module

to choose is once again a function of the number of resources consumed versus the number

available for each module. Table 4.10 shows RALF values, assuming 24-bit data widths,

for three different cases of available resources. Once again, looking at LUT, flip-flop, and

DSP48 usage does not give sufficient information to determine which module is cheaper.

As in the previous example, the cheapest module changes with the available resources. In

addition to individual components, RALFs can also be used to determine the relative costs

72

of entire circuits. The RALF value of a circuit is simply the sum of the RALFs of each

component in that circuit.

In summary, methods have been derived for both estimating the number of resources

a circuit will consume and comparing circuits using the RALF. Both of these concepts play

vital roles in the architecture derivation methods described in the next section.

4.6 Scheduling and Mapping (SAM)

4.6.1 Introduction

The scheduling and mapping stage (SAM) is the crux of the SATH algorithm. The

task of SAM is to assign a start time (scheduling) and a resource (mapping) to each node in

the optimized DFG. The goal is to find the smallest circuit that meets or exceeds a specified

latency. It is assumed that suitable hardware modules exist onto which DFG nodes can be

mapped. Addition nodes should be mapped to adders, multiplication nodes to multipliers,

load and store nodes to memory elements, etc. The architecture space to be searched by

the SAM algorithm is a combinatorial space in three dimensions: time, operation type,

and resource number, as shown in Eq. (4.14), where z represents problem size, P is the

permutation function, t is the time constraint, and ri and ni are the number of resources

and the number of nodes of type i, respectively.

z =
p∏

i=1

P ((tri), ni) (4.14)

Fig. 4.18 shows a simple example. The four-node graph shown in Fig. 4.18a consists entirely

of addition nodes, thus the magnitude of the operation is one. Assume that four adders are

available, an addition operation takes one time step to complete, and all operations should

complete within four time steps. Fig. 4.18b and Fig. 4.18c show two legal placements for

all nodes in the two-dimensional matrix. These placements are considered legal as no node

dependences are violated, meaning no child node is scheduled to begin before all associated

parent nodes have completed. Fig. 4.18b represents a configuration that uses four adders

73

and completes in three time steps; while Fig. 4.18c uses a single adder, completing in four

time steps. A score can be assigned to the different architectures, depending on the relative

importance of resource usage and execution time. The size of the search space shown in

Fig. 4.18: Possible schedules and mappings for a simple DFG. The DFG shown in (a) can
be scheduled and mapped as shown in (b) or (c).

Fig. 4.18 may appear small, but is in truth quite large. Strictly speaking, the search space

is the number of permutations of four nodes scattered across a four-by-four grid. This

yields 43,680 possible configurations. However, techniques can be used to trim the size of

the search space. First, the number of available hardware units need not be larger than

the number of nodes to be mapped. In the example of Fig. 4.18 there are four addition

operations. Thus, the largest number of adders needed is four, as any additional adders

would simply go unused. Second, the number of available time steps can be bounded by

the sum of the latencies of all operations in the DFG. The total latency of all additions in

Fig. 4.18 (assuming one time step per addition) is four. Any additional time steps would

be wasted time with nothing scheduled. Third, the window of time steps in which each

node can be scheduled can be constrained by computing the ASAP (As Soon As Possible)

and ALAP (As Late As Possible) values for each node. This will remove a large number

of illegal solution states from the search space. ASAP and ALAP schedules are simple to

compute. ASAP scheduling starts with source nodes, which are assigned a start time of

zero. The tree is then traversed from top to bottom, with each node being assigned the

earliest possible start time that does not violate dependences from parent nodes. ALAP

74

Table 4.11: ASAP and ALAP Schedules for the SAM Problem Shown in Fig. 4.18
Node ASAP Time Step ALAP Time Step
0 0 1
1 0 1
2 1 2
3 2 3

scheduling is similar. All sink nodes are assigned the latest possible start time, based upon

the target latency of the entire graph and the individual computation latency of each sink

node. The graph is then traversed from bottom to top, with each node being assigned

the latest possible start time that does not violate dependences to child nodes. Table 4.11

lists ASAP and ALAP times for the SAM problem shown in Fig. 4.18. Given these added

constraints, the size of the search space can be formally described by the equation shown

in Eq. (4.15), where s is the number of states in the search space, n is the number of nodes

in the DFG, ri is the number of nodes of type i, and tALAP and tASAP are the ALAP and

ASAP time boundaries, respectively.

s =
n∏

i=1

ri(tALAPi − tASAPi) (4.15)

Using this equation and the information from Table 4.11, the size of the search space for the

problem shown in Fig. 4.18 is reduced from 43,680 states to 4,096 states, a reduction of over

ten times. The size of the search space becomes critical for large DFGs with hundreds or

thousands of nodes. Search space sizes for these problems can easily exceed billions or even

trillions of states. Appropriately trimming the architecture space can potentially reduce

search times from days to minutes.

A typical evaluate stage DFG for the SAM stage to process is shown in Fig. 4.19.

This DFG consists of 1,783 total nodes. The type and number of nodes in Fig. 4.19 are

listed in Table 4.12. Assuming that each node in the DFG consumes one time step, the

graph in fig. 50 has a minimum total latency of 106 time steps. If the target latency for a

valid architecture is 120 time steps, the number of states in the architecture space would

be 7.25(1024) states using the nave permutation method. Using the constraints specified

75

Table 4.12: Node Distribution by Type for the DFG Shown in Fig. 4.19
Node Type Number Present in DFG
add 197
subtract 198
absolute value 198
load 792
store 1
constant 397

by Eq. (4.15), the size of the space is reduced to 6.79(1020) states, a reduction in size of

1.07(104) times.

Fig. 4.19: A typical evaluate stage DFG for evaluation by the SAM algorithm.

4.6.2 Possible SAM Algorithms

Based upon the above discussion of the combinatorial nature of the size of the search

space for the schedule and map problem, an efficient SAM algorithm is imperative to provide

results within a reasonable amount of time. Chapter 2 described several techniques for

76

exploring the architecture space. Three different exploration methods were implemented

and evaluated, each varying in execution time and quality of results.

The first method attempted is simple simulated annealing using iterative repair. The

algorithm begins by allocating a resource number and a time step to each node in the

DFG. Architectural exploration is done by picking a random node from the list, modifying

either the time step or the assigned resource number of that node, and computing a score

for the new configuration. Components of the score include penalties for the number of

dependency violations and a lesser penalty for the overall size of the circuit, computed using

the resource estimation technique described in this chapter. The computation of the circuit

size is complicated by the insertion of multiplexers and delay registers, which also consume

resources and must be factored in to the overall resource usage cost. If multiple DFG nodes

are mapped to the same resource at different time steps, a multiplexer is generally needed

to select the correct input at the correct clock cycle. If there is a delay of one or more cycles

between the completion of execution of a parent node and the commencement of execution

of a child node, one or more delay registers must be inserted to preserve correct circuit

timing. As an example, consider the DFG and associated architecture shown in Fig. 4.20.

Notice that the DFG shown in Fig. 4.20a consists of two constants, two random number

generations (RND), two modulus nodes (MOD), two loads (LD), and two stores (ST). The

architecture, shown in Fig. 4.20b, only has one random number generator (RND), one

constant generator (CONSTANT), one divider (MOD), and one write port. Three registers

(REG) and one two-to-one multiplexer (MUX2) are needed to manage dataflow through

the circuit. Notice that a controller module (CTRL) is also present in the architecture to

control the multiplexer select line and the memory write-enable line. The resource cost of

registers and multiplexers cannot be neglected in overall resource usage computations, as

multiplexers can be more expensive than some operational units.

Unfortunately, the simple simulated annealing method for SAM proves to be intractable

for problems of any significant size. The example discussed in Fig. 4.19 and Table 4.12

consists of 6.79x1020 states, following Eq. (4.15). While the strength of simulated annealing

77

Fig. 4.20: Example of a DFG (a) with an associated architecture (b), including a multiplexer
and three delay registers.

78

lies in the fact that a close-to-optimal solution can be found while only visiting a fraction

of the states in the architecture space, it is still limited in applicability to very large spaces.

For example, say that only one percent of the total states in the space need to be visited to

find a good solution and that the SAM stage can evaluate 10,000 solution states per second.

The problem described by Fig. 4.19 and Table 4.12 would require 6.79(1014) seconds, or

about 21.5 million years to evaluate. Thus, it can be concluded that an all-in-one heuristic

search is not a viable solution.

The second method attempted is Force Directed Scheduling (FDS) [47, 48]. FDS is

described in chapter 2. As a quick summary, FDS is not a search algorithm, but rather

a mathematical approximation algorithm. The FDS algorithm loops only once for each

node in the DFG, meaning even the most-complex graphs can be scheduled and mapped

in a matter of seconds. On each iteration, FDS computes a force for each unscheduled

node and then fixes the node/cycle pair with the lowest force. Components of the force

equation include self force, predecessor force, and successor force. The strategy behind FDS

is to reduce the concurrency of nodes of the same type while meeting the specified circuit

latency. It is important to note that FDS is a scheduling algorithm only, and must be

coupled with a mapping algorithm to complete the schedule-and-map task. Unfortunately,

the one-and-done nature of FDS, coupled with the lack of provision for estimating needed

multiplexer and register resources, leads to suboptimal results for DFGs of any significant

size. Extremely wide multiplexers with 32 or 64 inputs are often required to manage data

flow. These wide multiplexers are inefficient in resource usage and slow down maximum

clock speeds. For example, a 64-to-1 multiplexer handling 32-bit data lines consumes 1024

LUTs on a Virtex 4 FPGA. Additionally, the greedy nature of FDS often results in illegal

architectures. For example, scheduling can take place in such a way that several write

operations must be performed on the same memory on the same clock cycle, requiring

several write ports. The physical properties of Virtex 4 FPGAs limit the number of write

ports on any memory block to two.

79

4.6.3 SAM Method of Choice

As discussed previously, appropriately trimming the architecture space can potentially

reduce search times from days to minutes. Even with smart management of the architecture

space, the size of the space easily exceeds manageable levels. A traditional way to reduce the

size of the space is to break the problem into two parts: scheduling and mapping. Scheduling

involves assigning each node in a DFG to a specific start time. Mapping means assigning

each scheduled node to a specific resource. SATH makes use of this partitioning of work.

Two simulated annealing algorithms are executed, one to schedule the DFG and a second

to map. A simulated annealing algorithm is adapted to solving a specific type of problem

through customization of five parameters: solution format, starting solution, alteration

strategy, evaluation strategy, and temperature manipulation. These characteristics are

defined for both the scheduling and mapping algorithms below.

The task of the scheduler is to assign a start time to each node in the DFG. A logical

representation of a solution is an array, where index represents node ID and value represents

start time. Determining a correct initial solution is critical to efficient execution of the

algorithm. The initial solution for the SATH scheduler is the ASAP start time for each

node, thus ensuring that the algorithm begins with a valid schedule. The solution alteration

strategy is to randomly pick one location in the array and reassign the associated start time

to a random number that lies within the window bounded by the ASAP and ALAP times.

According to the pseudocode in Fig. 2.8, once a new solution has been produced by

altering the prior solution, it must be evaluated. This equation is given in Eq. (4.16) through

Eq. (4.21).

v =
n−1∑
i=0

p−1∑
j=0

sj + tj − si if sj + tj > si else 0 (4.16)

v =
n−1∑
i=0

p−1∑
j=0

si − (sj + tj)− 1 if sj + tj < si else 0 (4.17)

∀crεR,sεS

n−1∑
i=0

1 if ri = r and si = s else 0 (4.18)

80

∀wrεR∀sεS(wr = max(wr, cr,s)) (4.19)

u =
r−1∑
i=0

wiai (4.20)

q = 100v + u + aregd (4.21)

From Eq. (4.16), v is the sum of the magnitude of all cases in which a node (in set n)

is scheduled such that one or more of its parent nodes (in set p) have not yet completed,

where s represents start time and t represents latency. Register usage is determined using

Eq. (4.17). Any time a gap of one or more cycles exists between completion of a parent

node and commencement of a child node, registers are needed. Because mapping has not

yet occurred, worst-case register usage is computed, assuming each node is mapped to a

unique resource and no register sharing exists. In Eq. (4.18) through Eq. (4.20), the circuit

size (less registers and multiplexers) is computed. In Eq. (4.18), a concurrency matrix,

C, is assumed with dimensions equal to number of resource types (R) and target schedule

length (S). The maximum number of operations of each type that start on each clock

cycle is computed. In Eq. (4.19), the worst-case concurrency for each resource type, wr is

identified. In Eq. (4.20), resource usage is summed across all operation types. The score,

given in Eq. (4.21), is a function of dependency graph violations (v), resource usage in

RALFs (u), and estimated register usage (d) multiplied by the area cost of a register (areg).

Because mapping has not yet taken place, the resource usage is an estimate derived from

the concurrency of each node type in the DFG. The initial temperature of the scheduler is

set using Eq. (4.22), as both the number of nodes and the number of available time slots

define the size of the search space.

ti = (nl)0.8 (4.22)

Here, ti is initial temperature, n is number of nodes in the DFG, and l is target latency.

Through trial and error, it was found that raising this product to the 0.8 power works well

across different problem sizes.

Once the scheduler has completed, the scheduled DFG is passed to the mapper. The

81

job of the mapper is to assign each node in the DFG to a specific resource. A mapped

solution is represented as an array where index represents node ID and value represents

resource number. The initial solution for the SATH mapper is a valid mapping. Each

node is scheduled on the lowest-numbered available resource for the given clock cycle. The

alteration strategy is to select one node at random and change the associated binding

to a new, randomly selected resource. The process of assigning a score to a solution in

the mapper is more complex than in the scheduler. The mapper must be cognizant of

total circuit size. The size of a circuit consists of functional units and data control units

(multiplexers and registers), which are used to control data flow throughout the circuit.

Altering a mapping can affect both the number of functional units needed and the number

of data control units needed. The evaluate equations are given in Eq. (4.23) and Eq. (4.24):

ρ =
n−1∑
i=0

n−1∑
j=0

1 if si = sj and bi = bj else 0 (4.23)

q = 10ρ + u (4.24)

Here, q is solution quality, ρ is the number of resource over-usage occurrences (situations

where two nodes are scheduled on the same unit at the same time, where b represents

resource binding), and u is the number of resources needed (functional and control), as

computed in Eq. (4.20). The search space for the mapping problem is a function of the size

of the DFG. The initial temperature is computed using Eq. (4.25).

ti = n1.2 (4.25)

In general the SAM stage can only operate on pipeline stages in which parallelism can be

extracted. In the case of the simulated annealing problems discussed in this dissertation,

the copy, alter, and evaluate stages can be accelerated. The accept and adjust temperature

stages cannot, as they are purely sequential processes. The copy stage is not compute

intensive but is memory intensive. Its job is to copy a solution from one memory bank to

another. Techniques for accelerating the execution of this stage were described in Chapter

82

3.

Fig. 4.21 shows the general flow of execution for the SAM stage as it iteratively attempts

to improve pipeline performance. A pipelined processor can only run as fast as the latency

of the slowest stage. The algorithm iteratively reduces the latency of the worst stage until

no more parallelism can be derived or FPGA resources are exhausted.

Fig. 4.21: SAM execution flowchart.

83

4.7 HIF to VHDL Converter

The SAM stage produces a circuit description in a custom hardware intermediate for-

mat (HIF). These files must be converted to VHDL then imported into a third-party design

tool such as Xilinx ISE for synthesis and implementation. Fig. 4.22 shows an example of

HIF code and equivalent VHDL. HIF format specifies modules, ports, and connections that

are easily translated into VHDL.

Fig. 4.22: Conversion of HIF to VHDL.

84

Chapter 5

Results

5.1 Test Cases

In order to test the performance of the SATH algorithm, a variety of search prob-

lems solved using simulated annealing should be tried. This section describes three such

problems, all of which are directly related to space mission planning and scheduling. These

problems are traveling salesperson, graph coloring, and dependency-graph violation removal.

5.1.1 Traveling Salesperson

The traveling salesperson problem (TSP) [83] consists of a set of cities that a salesperson

must visit. The salesperson can move from any city to any other city. The goal of the

problem is to visit every city exactly once with a minimal amount of travel. In the space

environment, TSP cities could represent points of interest that an unmanned rover might

want to visit while conserving the battery as much as possible.

TSP can be represented as an ordered list of cities. Fig. 5.1 shows an example for ten

cities. The connections show two possible orders of visitation, either starting at node six

or starting at node eight. For a problem of n cities, there are n! unique visitation paths,

thus making TSP an ideal problem to be solved by simulated annealing. Three features

Fig. 5.1: Example traveling salesperson problem for ten cities. The edges represent two
possible orders of visitation.

85

distinguish one simulated annealing problem from another: solution format, alter strategy,

and evaluation equation. For TSP, the format of the solution is a list of cities arranged in

the order to be visited. The alter strategy involves picking two locations in the solution at

random and swapping the contents of those locations. Fig. 5.2 shows the solution format

and alter strategy for the problem of Fig. 5.1. The initial solution indicates that cities should

be visited in the order six, five, one, two, three, four, etc. Following the alter strategy, two

slots in the ordering are selected at random and contents are swapped. The new ordering

is six, five, four, two, three, one, etc. Once the solution as been altered, it must also be

Fig. 5.2: Solution format and alter strategy for TSP.

evaluated. The score of a solution is a representation of how well it meets the goal of the

problem. In the case of TSP, the goal is minimization of total distance traveled. In Fig. 5.2,

this is computed by summing the distance from six to five, from five to four, from four to

two, etc. Physical coordinates are provided for each city. If the goal is to minimize total

Manhattan distance in two dimensions, the evaluation equation is given in Eq. (5.1), where

d represents total distance, n is number of cities, and x and y represent coordinates on a

two-dimensional grid. An example of TSP code can be found in Appendix B.

d =
n−2∑
i=0

|xi − xi+1|+ |yi − yi+1| (5.1)

5.1.2 Graph Coloring Problem

The graph coloring problem (GCP) [83] is solved by determining whether an arbitrary

map in d dimensions can be shaded by region using c colors with no adjacent regions

sharing the same color. This is applicable in the field of space processing as GCP can be

used to determine variable or event liveness, thus indicating the number of registers or other

86

resources that a system needs.

The solution format for GCP is a numbered list of regions. Colors are represented as a

set of unique integers. A separate list of adjacencies is also maintained. Fig. 5.3 shows how

GCP can be abstracted as an adjacency graph. The problem shown in Fig. 5.3 consists of 20

regions, each represented by a node in the graph. Edges in the graph represent adjacencies.

For example, region six is adjacent to regions 17 and zero. To satisfy graph colorability,

neither region 17 nor zero can be assigned the same color as region six. The alter strategy

Fig. 5.3: An adjacency graph for GCP consisting of 20 regions.

for GCP is shown in Fig. 5.4. A region is selected at random and its associated color is

randomly changed to a new value. Fig. 5.4 assumes nine regions and four colors, numbered

zero to three. The evaluation equation for GCP is fairly simple. The goal of GCP is to

87

Fig. 5.4: Solution format and alter strategy for GCP.

remove all adjacency violations. The evaluate equation shown in Eq. (5.2) simply counts

the number of violations in a solution, where v represents number of violations, p is the

number of adjacency pairs, and a and b represent nodes connected by an adjacency edge.

The assert operator returns a one if the expression is true and a zero otherwise. An example

of GC code can be found in Appendix C.

v =
p−1∑
i=0

assert(cai = cbi
) (5.2)

5.1.3 Dependency Graph Violation Removal Problem

The dependency graph violation removal problem (DGVRP) is a simple scheduling

technique. Given a dependency graph, the job is to schedule all nodes within a constrained

time period such that all parent nodes complete operation before associated children nodes

begin. Space missions often include sets of dependent tasks that need to be performed with

limited time in which to complete everything.

Fig. 5.5 shows an example of a dependency graph. To avoid violations, task seven must

wait for tasks two and four to complete, task 12 must wait for tasks zero, three, and six to

complete, etc. The DGVRP solution format is a list of start times, one for each node in

the graph. The alter strategy is similar to that for GCP. A task is selected at random and

its start time is changed to a new random value. The evaluate equation accumulates the

magnitude of each violation. This is described in Eq. (5.3), where v is number of violations,

p is the number of dependency edges, s represents a source task, d a destination task, and

88

Fig. 5.5: Example of a dependency graph. Nodes represent tasks and edges represent
dependencies.

t a start time. An example of DGV code can be found in Appendix D.

v =
p−1∑
i=0

(assert(tsi ≥ tdi
))(tsi − tdi

) (5.3)

5.2 SATH vs. Impulse/PPC/X86

Test cases are six different, randomly-generated examples: 20-city TSP, 100-city TSP,

20-node GCP, 100-node GCP, 20-event DGVRP, and 100-node DGVRP. All tests were per-

formed targeting a Xilinx V4SX35 FPGA. Execution platforms considered include circuits

generated by the Impulse tool, a PowerPC 750, an AMD Athlon 64 X2, and custom circuits

generated by SATH. In addition to the Impulse tool for C-to-hardware conversion, attempts

were made to utilize Handel-C [23], SPARK [28], and System C [18]. Josh Templin assisted

in the evaluation of these tools, with the goal of identifying tools in which pure C source

code is supported with little or no modification by the user. Handel-C required user-defined

modules for supporting floating-point arithmetic. SPARK is designed specifically to analyze

loops and branch conditions and also does not support floating-point arithmetic. System C

is technically a C++ library. Source code needs to be rewritten using this library for proper

functionality. Only Impulse provides a (relatively) direct path for interpreting C code with

little or no modification.

89

Fig. 5.6 contains execution time results for all six problems when respective architec-

tures are clocked at maximum clock rates (Impulse 121 MHz, PowerPC 373.5 MHz, AMD

2.61 GHz, SATH 175 to 183 MHz). Note the y-axis in Fig. 5.6 is a logarithmic scale.

SATH significantly outperforms all platforms except for the AMD. Fig. 5.7 shows speedup

of SATH-generated circuits with respect to other circuits for all cases. Speedups range from

just over one to around 42 times. In many embedded applications, such as space systems,

Fig. 5.6: Comparative performance in total execution time.

power usage is the principle concern in determining how fast to clock a circuit. Thus, nor-

malizing clock frequency and comparing execution speeds in number of clock cycles may

be a better measure of relative performance. Fig. 5.8 shows execution times in clock cycles

per iteration and Fig. 5.9 shows associated SATH speedup. In this case, SATH-generated

architectures run between five and 80 times faster than other implementations, which is a

significant speedup. Finally, the performance of SATH-generated circuits in resource usage

can be compared with that of other FPGA-based solutions, namely Impulse-generated cir-

cuits. Fig. 5.10 to Fig. 5.14 show this comparison with resource usage represented in LUTs

90

Fig. 5.7: Speedup of SATH-generated circuits comparing total execution time with respect
to other implementations.

Fig. 5.8: Comparative performance in cycles per iteration.

91

Fig. 5.9: Speedup of SATH-generated circuits comparing clock cycles per iteration with
respect to other implementations.

(Fig. 5.10), flip-flops (Fig. 5.11), DSP48s (Fig. 5.12), BRAMs (Fig. 5.13), and RALFs

(Fig. 5.14), respectively. On average, it appears that SATH-generated architectures use

about half the resources of Impulse-generated architectures when the RALF unit of area

measurement is employed. Additionally, in all cases but BRAMs, SATH-generated circuits

are generally equally or more efficient on a resource-by-resource basis.

Because these designs are targeted for in-space applications, protection against ra-

diation is necessary. Xilinx provides a plug-in tool called X-TMR [76] for automatically

deriving a TMR version (triple modular redundancy) on the target device. This provides

adequate fault tolerance against SEUs (single event upsets) at the expense of increasing the

size of the circuit by 210 to 220

92

Fig. 5.10: Comparative LUT usage of circuits generated using Impulse and SATH.

Fig. 5.11: Comparative flip-flop usage of circuits generated using Impulse and SATH.

93

Fig. 5.12: Comparative DSP48 usage of circuits generated using Impulse and SATH.

Fig. 5.13: Comparative BRAM usage of circuits generated using Impulse and SATH.

94

Fig. 5.14: Comparative RALF usage of circuits generated using Impulse and SATH.

95

Chapter 6

Conclusions and Future Work

In this paper, a novel methodology titled SATH (Simulated Annealing to Hardware) for

generating modular hardware from application-specific source code has been presented. Per-

formance of this algorithm for accelerating simulated annealing algorithms shows promising

results. A method for the conversion of software source code into appropriate hardware

accelerator circuits using a SAM algorithm described. The importance of selecting a proper

architecture template is discussed. A method for compile-time approximation of required

hardware resources is presented. Simulated annealing circuits generated using the proposed

methodology are compared with the performance of commercially-available software-to-

hardware conversion tools, with significant speedups attained across all test cases. While

this research is specific to deriving hardware to accelerate simulated annealing codes, the

techniques presented are applicable to a broad range of problem domains.

As discussed in chapter 2, various techniques exist for performing heuristic searches.

Simulated annealing has been covered in this research. Additional work can be done to

identify hardware templates and execution strategies for other methods, such as genetic

algorithms or stochastic beam search.

Several optimization strategies from the field of compilers, as presented in [84] and

[85], should also be explored. Most compiler optimization strategies are performed with

knowledge of the specifics of the target architecture. Optimization techniques such as loop

optimizations, code motion, strength reduction, and exploitation of mathematical properties

such as the commutative and associative properties could play a role.

In the future, the technique of accelerator design using a high level template coupled

with the described SAM method can be applied to other application domains. Additionally,

work can be done to automate the process of identifying the form of the high level template.

96

References

[1] H. Emam, M. A. Ashour, H. Fekry, and A. M. Wahdan, “Introducing an fpga based
genetic algorithms in the applications of blind signals separation,” in Proceedings of
the 3rd IEEE International Workshop onSystem-on-Chip for Real-Time Applications,
pp. 123–127, 2003.

[2] A. Winterholler, M. Roman, D. Miller, J. Krause, and T. Hunt, “Automated core
sample handling for future mars drill missions,” in 8th International Symposium on
Artificial Intelligence, Robotics, and Automation in Space, Germany, 2005.

[3] NASA, “New space communications capabilities available for nasa’s discovery and new
frontier programs,” 2006.

[4] J. Ramos, J. Samson, D. Lupia, I. Troxel, R. Subramaniyan, A. Jacobs, J. Greco,
G. Cieslewski, J. Curreri, M. Fischer, E. Grobelny, A. George, V. Aggarwal, M. Patel,
and R. Some, “High-performance, dependable multiprocessor,” in Aerospace Confer-
ence, IEEE, J. Samson, Ed., 2006.

[5] W. Markiewicz, D. Titov, N. Ignatiev, H. Keller, D. Crisp, S. Limaye, R. Jaumann,
R. Moissl, N. Thomas, L. Esposito, S. Watanabe, B. Fiethe, T. Behnke, I. Sze-
merey, H. Michalik, H. Perplies, M. Wedemeier, I. Sebastian, W. Boogaerts, S. Hviid,
C. Dierker, B. Osterloh, W. Bker, M. Koch, H. Michaelis, D. Belyaev, A. Dannenberg,
M. Tschimmel, P. Russo, T. Roatsch, and K. Matz, “Venus monitoring camera for
venus express,” Planetary and Space Science, vol. 55, pp. 1701–1711, 2007.

[6] B. Fiethe, H. Michalik, C. Dierker, B. Osterloh, and G. Zhou, “Reconfigurable system-
on-chip data processing units for space imaging instruments,” in Design, Automation
and Test in Europe, pp. 1–6, 2007.

[7] S. Knight, G. Rabideau, S. Chien, B. Engelhardt, and R. Sherwood, “Casper: space
exploration through continuous planning,” IEEE Intelligent Systems, vol. 16, no. 5,
pp. 70–75, 2001, 1541-1672.

[8] R. Sherwood, S. Chien, D. Tran, B. Cichy, R. Castano, A. Davies, and G. Rabideau,
“The eo-1 autonomous sciencecraft,” in Small Satellite Conference, Logan, UT, 2007.

[9] R. Sherwood, A. Govindjee, D. Yan, G. Rabideau, S. Chien, and A. Fukunaga, “Us-
ing aspen to automate eo-1 activity planning,” in Proceedings of the IEEE Aerospace
Conference, vol. 3, pp. 145–152 vol.3, 1998.

[10] Xilinx, Virtex-4 FPGA User Guide, 2008.

[11] Xilinx, Virtex-5 FPGA User Guide, 2008.

[12] Altera, Stratix IV Device Handbook, 2008.

97

[13] W. Wolf, FPGA-Based System Design. Prentice Hall, 2004.

[14] S. A. Edwards, “The challenges of synthesizing hardware from c-like languages,” IEEE
Design and Test of Computers, vol. 23, no. 5, pp. 375–386, 2006, 0740-7475.

[15] C. E. Stroud, R. R. Munoz, and D. A. Pierce, “Behavioral model synthesis with cones,”
IEEE Transactions on Design and Test of Computers, vol. 5, no. 3, pp. 22–30, 1988,
0740-7475.

[16] D. Ku and G. De Micheli, “Hardwarec - a language for hardware design,” CSL-TR-90-
419, 1990.

[17] D. Galloway, “The transmogrifier c hardware description language and compiler for
fpgas,” in Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 136–144, 1995.

[18] T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with SystemC. Kluwer,
2002.

[19] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens, “A programming
environment for the design of complex high speed asics,” in Proceedings of the Design
Automation Conference, pp. 315–320, 1998.

[20] R. J. Lipton, D. N. Serpanos, and W. H. Wolf, “Pdl++: an optimizing generator lan-
guage for register transfer design,” in Proceedings of the IEEE International Symposium
on Circuits and Systems, pp. 1135–1138 vol.2, 1990.

[21] D. Soderman and Y. Panchul, “Implementing c algorithms in reconfigurable hardware
using c2verilog,” in Proceedings of the IEEE Symposium on FPGAs for Custom Com-
puting Machines, pp. 339–342, 1998.

[22] K. Wakabayashi, “C-based synthesis experiences with a behavior synthesizer, cyber,” in
Proceedings on the Design, Automation and Test in Europe Conference and Exhibition,
pp. 390–393, 1999.

[23] Celoxica, Handel-C Reference Manual, 2003.

[24] C. Hoare, “Communicating sequential processes,” CACM, vol. 21, pp. 666–667, 1978.

[25] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca, V. Zammit,
and T. Nomura, “A c-based synthesis system, bach, and its application,” in Proceedings
of the Asia and South Pacific Design Automation Conference, pp. 151–155, 2001.

[26] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC: Specification Language
and Methodology. Kluwer, 2000.

[27] J. L. Tripp, K. D. Peterson, C. Ahrens, J. D. Poznanovic, and M. B. Gokhale, “Tri-
dent: an fpga compiler framework for floating-point algorithms,” in Proceedings of the
International Conference on Field Programmable Logic and Applications, pp. 317–322,
2005.

98

[28] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Spark: a high-level synthesis frame-
work for applying parallelizing compiler transformations,” in Proceedings of the 16th
International Conference onVLSI Design, pp. 461–466, 2003.

[29] M. Budiu and S. Goldstein, “Compiling application-specific hardware,” in Proc. FPL,
LNCS, pp. 853–863, Montpellier, France, 2002.

[30] A. Antola, M. D. Santambrogio, M. Fracassi, P. Gotti, and C. Sandionigi, “A novel
hardware/software codesign methodology based on dynamic reconfiguration with im-
pulse c and codeveloper,” in 3rd Southern Conference on Programmable Logic, pp.
221–224, 2007.

[31] P. Messmer, V. Ranjbar, D. Wade-Stein, and P. Schoessow, “Advanced accelerator con-
trol and instrumentation modules based on fpga,” in Particle Accelerator Conference,
pp. 506–508, 2007.

[32] G. Mehta, R. R. Hoare, J. Stander, and A. K. Jones, “Design space exploration for
low-power reconfigurable fabrics,” in Proceedings of the 20th International Parallel and
Distributed Processing Symposium, p. 4 pp., 2006.

[33] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Comparing three heuristic search
methods for functional partioning in hardware-software codesign,” Design Automation
for Embedded Systems, vol. 6, pp. 425–449, 2002.

[34] B. Miramond and J. M. Delosme, “Design space exploration for dynamically recon-
figurable architectures,” in Proceedings of the Design, Automation and Test in Europe
Conference, pp. 366–371 Vol. 1, 2005.

[35] G. Ascia, V. Catania, and M. Palesi, “Design space exploration methodologies for
ip-based system-on-a-chip,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, vol. 2, pp. II–364–II–367 vol.2, 2002.

[36] V. Catania, G. Ascia, M. Palesi, D. Patti, and A. G. Di Nuovo, “Fuzzy decision making
in embedded system design,” in Proceedings of the 4th international conference on
hardware/software codesign and system synthesis, pp. 223–228, 2006.

[37] E. M. d. Icaya, V. Rodellar, C. Gonzalez, V. Peinado, and V. Garcia, “Design space
exploration for an adaptive noise cancellation algorithm,” in Proceedings of the IEEE
International Conference on Reconfigurable Computing and FPGAs, pp. 1–7, 2006.

[38] C. Talarico, E. Rodriguez-Marek, and K. Min-sung, “Multi-objective design space ex-
ploration methodologies for platform based socs,” in 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer Based Systems, p. 7 pp., 2006.

[39] C. Silvano, G. Agosta, and G. Palermo, “Efficient architecture/compiler co-exploration
using analytical models,” Design Automation for Embedded Systems, vol. 11, pp. 1–23,
2007.

99

[40] K. Kurt, R. Kaushik, S. Nadathur, and J. Yujia, “An automated exploration framework
for fpga-based soft multiprocessor systems,” in Hardware/Software Codesign and Sys-
tem Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/IFIP International Con-
ference on, pp. 273–278, 2005.

[41] K. Atasu, R. G. Dimond, O. Mencer, W. Luk, C. Ozturan, and G. Diindar, “Optimizing
instruction-set extensible processors under data bandwidth constraints,” in Proceedings
of the Design, Automation and Test in Europe Conference, pp. 1–6, 2007.

[42] B. So, M. Hall, and P. Diniz, “A compiler approach to fast hardware design space
exploration in fpga-based systems,” in Conference on Programming Language Design
and Implementation, pp. 165–176, Germany, 2002.

[43] S. Bilavarn, G. Gogniat, J. L. Philippe, and L. Bossuet, “Design space pruning through
early estimations of area/delay tradeoffs for fpga implementations,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25, no. 10, pp.
1950–1968, 2006, 0278-0070.

[44] C. Silvano, D. Sciuto, D. Bruschi, and G. Beltrame, “Decision-theoretic exploration
of multiprocessor platforms,” in Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, pp. 205–210, 2006.

[45] R. Dimond, O. Mencer, and W. Luk, “Application-specific customisation of multi-
threaded soft processors,” Computers and Digital Techniques, IEE Proceedings-, vol.
153, no. 3, pp. 173–180, 2006, 1350-2387.

[46] T. L. Adam, K. Chandy, and J. Dickson, “A comparison of list scheduling for parallel
processing systems,” Communications of the ACM, vol. 17, pp. 685–690, 1974.

[47] P. G. Paulin and J. P. Knight, “Force-directed scheduling in automatic data path
synthesis,” in 24th Conference on Design Automation, pp. 195–202, 1987.

[48] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the behavioral synthesis
of asics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 8, no. 6, pp. 661–679, 1989, 0278-0070.

[49] M. Y. Wu and D. D. Gajski, “Hypertool: a programming aid for message-passing
systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 3, pp.
330–343, 1990, 1045-9219.

[50] M. Shang, S. Sun, and Q. Wang, “An efficient parallel scheduling algorithm of depen-
dent task graphs,” in Proceedings of the Fourth International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp. 595–598, 2003.

[51] J. J. Hwang, Y. C. Chow, F. D. Anger, and C. Y. Lee, “Scheduling precedence graphs
in systems with inter processor communication times,” SIAM Journal on Computing,
vol. 5, no. 8, pp. 879–886, 1994.

[52] K. Yu-Kwong and I. Ahmad, “Dynamic critical-path scheduling: an effective technique
for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 5, pp. 506–521, 1996, 1045-9219.

100

[53] S. Govindarajan and R. Vemari, “Improving the schedule quality of static-list time-
constrained scheduling,” in Proceedings of Design, Automation and Test in Europe
Conference and Exhibition, p. 749, 2000.

[54] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for compile-
time job scheduling in homogeneous computing environments,” in Proceedings of the
International Conference on Parallel Processing Workshops, pp. 149–155, 2003.

[55] S. Govindarajan and R. Vemari, “Cone-based clustering heuristic for list-scheduling
algorithms,” in Proceedings of European Design and Test Conference, pp. 456–462,
1997.

[56] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of conditional
process graphs for the synthesis of embedded systems,” in Proceedings of the Design,
Automation and Test in Europe Conference, pp. 132–138, 1998.

[57] R. J. Cloutier and D. E. Thomas, “The combination of scheduling, allocation, and map-
ping in a single algorithm,” in Proceedings of the 27th ACM/IEEE Design Automation
Conference, pp. 71–76, 1990.

[58] J. Holland, Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[59] S. Russel and P. Norvig, Artificial Intelligence A Modern Approach, 2nd ed. Pearson,
2003.

[60] M. S. Hamid and S. Marshall, “Fpga realisation of the genetic algorithm for the design
of grey-scale soft morphological filters,” in Proceedings of the International Conference
on Visual Information Engineering, pp. 141–144, 2003.

[61] H. E. Mostafa, A. I. Khadragi, and Y. Y. Hanafi, “Hardware implementation of ge-
netic algorithm on fpga,” in Proceedings of the Twenty-First National Radio Science
Conference, pp. C9–1–9, 2004.

[62] S. D. Scott, A. Samal, and S. Seth, “Hga: A hardware-based genetic algorithm,” in
Proceedings of the Third International ACM Symposium on Field-Programmable Gate
Arrays, pp. 53–59, 1995.

[63] T. Wallace and Y. Leslie, “Hardware implementation of genetic algorithms using fpga,”
in Proceedings of the 47th Midwest Symposium on Circuits and Systems, vol. 1, pp. I–
549–52 vol.1, 2004.

[64] Z. Zhenhuan, D. Mulvaney, and V. Chouliaras, “Investigation of a new genetic algo-
rithm designed for system-on-chip realization,” in Proceedings of the IEEE Congress
on Evolutionary Computation, pp. 2981–2987, 2006.

[65] S. Narayanan and C. Purdy, “Hardware implementation of genetic algorithm modules
for intelligent systems,” in Proceedings of the 48th Midwest Symposium on Circuits and
Systems, pp. 1733–1736 Vol. 2, 2005.

101

[66] T. Tachibana, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito, “General architecture
for hardware implementation of genetic algorithm,” in 14th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, pp. 291–292, 2006.

[67] M. A. Vega-Rodriguez, R. Gutierrez-Gil, J. M. Avila-Roman, J. M. Sanchez-Perez, and
J. A. Gomez-Pulido, “Genetic algorithms using parallelism and fpgas: the tsp as case
study,” in International Conference Workshops on Parallel Processing, pp. 573–579,
2005.

[68] T. Anantharaman and R. Bisiani, “A hardware accelerator for speech recognition al-
gorithms,” in Proceedings of the 13th annual international symposium on Computer
architecture, pp. 216–223, Tokyo, Japan, 1986.

[69] M. Wrighton and A. DeHon, “Hardware-assisted simulated annealing with application
for fast fpga placement,” in International Symposium on Field-Programmable Gate
Arrays, pp. 33–42, 2003.

[70] T. Tascione, Introduction to the Space Environment, 2nd ed. Krieger, 1994.

[71] M. Berg, “Fault tolerance implementation within sram based fpga design based upon
the increased level of single event upset susceptibility,” in Proceedings of the 12th IEEE
International On-Line Testing Symposium, pp. 89–91, 2006.

[72] L. Yanmei, L. Dongmei, and W. Zhihua, “A new approach to detect-mitigate-correct
radiation-induced faults for sram-based fpgas in aerospace application,” in Proceedings
of the IEEE National Aerospace and Electronics Conference, pp. 588–594, 2000.

[73] C. A. Hulme, H. H. Loomis, A. A. Ross, and Y. Rong, “Configurable fault-tolerant pro-
cessor (cftp) for spacecraft onboard processing,” in Proceedings of the IEEE Aerospace
Conference, vol. 4, pp. 2269–2276 Vol.4, 2004.

[74] G. L. Smith and L. de la Torre, “Techniques to enable fpga based reconfigurable fault
tolerant space computing,” in Proceedings of the IEEE Aerospace Conference, p. 11
pp., 2006.

[75] G. V. Larchev and J. D. Lohn, “Evolutionary based techniques for fault tolerant field
programmable gate arrays,” in Proceedings of the Second IEEE International Confer-
ence on Space Mission Challenges for Information Technology, p. 8 pp., 2006.

[76] Xilinx, Xilinx TMRTool, 2008.

[77] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited paper: En-
hanced architectures, design methodologies and cad tools for dynamic reconfiguration
of xilinx fpgas,” in International Conference on Field Programmable Logic and Appli-
cations, pp. 1–6, 2006.

[78] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve com-
puter reliability,” IBM Journal of Research and Development, pp. 200–209, 1962.

102

[79] P. Bernardi, M. Reorda, L. Sterpone, and M. Violante, “On the evaluation of seu
sensitiveness in sram-based fpgas,” in Proceedings of the 10th IEEE International On-
Line Testing Symposium, M. S. Reorda, Ed., pp. 115–120, 2004.

[80] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault injection analysis
of virtex fpga tmr design methodology,” in 6th European Conference on Radiation and
Its Effects on Components and Systems, C. Carmichael, Ed., pp. 275–282, 2001.

[81] L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-injection sys-
tem to evaluate seu effects in sram-based fpgas,” IEEE Transactions on Nuclear Sci-
ence, vol. 54, no. 4, pp. 965–970, 2007, 0018-9499.

[82] D. Rea, D. Bayles, P. Kapcio, S. Doyle, and D. Stanley, “Powerpc rad750 - a micro-
processor for now and the future,” in IEEE Aerospace Conference, pp. 1–5, 2005.

[83] M. Garey and S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, 1st ed. W. H. Freeman and Company, 1978.

[84] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[85] Y. Srikant and P. Shankar, The Compiler Design Handbook: Optimizations and Ma-
chine Code Generation, 2nd ed. CRC Press, 2008.

103

Appendices

104

Appendix A

Iterative Repair C Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX_EVENTS 2000
#define INITIAL_TEMP 10000
#define COOLING_RATE 0.9999
#define STOP_THRESHOLD 0.0001

#define MAX_RESOURCE_TYPES 4
#define MAX_LATENCY 32
#define MAX_EDGES 99

void createInitialSchedule(int *current);
void anneal(int *current);
void copy(int *current, int *next);
void alter(int *next);
int evaluate(int *next);
void accept(int *current_val, int next_val, int *current, int *next,

float temperature);
float adjustTemperature(float temperature);

int main()
{

int current[MAX_EVENTS];

createInitialSchedule(current);
anneal(current);
return 0;

}

void createInitialSchedule (int *current)
{

int i;

for (i=0; i<MAX_EVENTS; i++)

105

{
current[i] = 0;

}
}

void anneal(int *current)
{

float temperature;
int current_val, next_val;
int next[MAX_EVENTS];

temperature = INITIAL_TEMP;
current_val = RAND_MAX;
while (temperature > STOP_THRESHOLD)
{

copy(current, next);
alter(next);
next_val = evaluate(next);
accept(¤t_val, next_val, current, next, temperature);
temperature = adjustTemperature(temperature);

}
}

void copy(int *current, int *next)
{

int i;

for (i=0; i<MAX_EVENTS; i++)
{

next[i] = current[i];
}

}

void alter(int *next)
{

int i, j;

i = rand() % MAX_EVENTS;
j = rand() % MAX_LATENCY;
next[i] = j;

}

int evaluate (int *next)
{

static int edge_source[MAX_EDGES] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,

106

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,
81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98};

static int edge_destination[MAX_EDGES] = {
14,14,16,16,18,18,20,20,22,22,24,24,26,26,27,27,29,29,31,31,
33,33,35,35,37,37,38,39,39,41,41,43,43,45,45,47,47,49,49,50,
50,52,52,54,54,56,56,58,58,59,60,60,62,62,64,64,66,66,68,68,
69,69,71,71,73,73,75,75,76,77,77,79,79,81,81,83,83,84,84,86,
86,88,88,89,90,90,92,92,94,94,95,95,97,97,98,99,99,99,99};

static int resources[MAX_RESOURCE_TYPES] = {4, 4, 4, 4};
static int resource_usage[MAX_EVENTS] = {0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,
3,3,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,
2,3,3,3,3,3,3,3,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,3};

int i, j, start, stop, conflicts;
int t_matrix[MAX_LATENCY][MAX_RESOURCE_TYPES];

conflicts = 0;
start = MAX_LATENCY;
stop = 0;
for (i=0; i<MAX_RESOURCE_TYPES; i++)
{

for (j=0; j<MAX_LATENCY; j++)
{

t_matrix[j][i] = 0;
}

}
for (i=0; i<MAX_EVENTS; i++)
{

if (next[i] < start)
{

start = next[i];
}
if (next[i] > stop)
{

stop = next[i];
}

}
conflicts = stop - start;

for (i=0; i<MAX_EDGES; i++)
{

if (next[edge_source[i]] >= next[edge_destination[i]])
{

107

conflicts += next[edge_source[i]] - next[edge_destination[i]] + 1;
}

}

for (i=0; i<MAX_EVENTS; i++)
{

t_matrix[next[i]][resource_usage[i]]++;
}
for (i=0; i<MAX_LATENCY; i++)
{

for (j=0; j<MAX_RESOURCE_TYPES; j++)
{

if (t_matrix[i][j] > resources[j])
{

conflicts = conflicts + (t_matrix[i][j] - resources[j]);
}

}
}
return conflicts;

}

void accept(int *current_val, int next_val, int *current, int *next,
float temperature)

{
int delta_e, i;
float p, q;

delta_e = next_val - *current_val;
if (delta_e <= 0)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
else
{

p = exp(-((float)delta_e)/temperature);
q = (float) rand() / (float) RAND_MAX;
if (q < p)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}

108

*current_val = next_val;
}

}
}

float adjustTemperature(float temperature)
{

return temperature * COOLING_RATE;
}

109

Appendix B

TSP C Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define MAX_EVENTS 20
#define INITIAL_TEMPERATURE 10000
#define COOLING_RATE 0.9999
#define STOP_THRESHOLD 0.0001

void anneal(int *current);
void copy(int *current, int *next);
void alter(int *next);
int evaluate(int *next);
void accept(int *current_val, int next_val, int *current, int *next,

float temperature);
float adjustTemperature();

int main()
{

static int current[MAX_EVENTS] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19};

srand(time(NULL));
anneal(current);
return 0;

}

void anneal(int *current)
{

float temperature;
int current_val, next_val;
int next[MAX_EVENTS];

temperature = INITIAL_TEMPERATURE;
current_val = RAND_MAX;

110

while (temperature > STOP_THRESHOLD)
{

copy(current, next);
alter(next);
next_val = evaluate(next);
accept(¤t_val, next_val, current, next, temperature);
temperature = adjustTemperature();

}
}

void copy(int *current, int *next)
{

int i;

for (i=0; i<MAX_EVENTS; i++)
{

next[i] = current[i];
}

}

void alter(int *next)
{

int a, b, temp;

a = rand() % MAX_EVENTS;
b = rand() % MAX_EVENTS;
temp = next[a];
next[a] = next[b];
next[b] = temp;

}

int evaluate (int *next)
{

const int x_pos[MAX_EVENTS] = {27, 32, 91, 60, 36, 64, 32, 9, 7,
64, 2, 28, 41, 4, 38, 33, 79, 65, 45, 57};

const int y_pos[MAX_EVENTS] = {20, 17, 98, 83, 35, 77, 41, 61,
0, 55, 17, 70, 4, 92, 25, 59, 16, 66, 39, 73};

int distance, i;

distance = 0;
for (i=0; i<MAX_EVENTS-1; i++)
{

distance += abs(x_pos[next[i]] - x_pos[next[i+1]]) +
abs(y_pos[next[i]] - y_pos[next[i+1]]);

}

111

return distance;
}

void accept(int *current_val, int next_val, int *current, int *next,
float temperature)

{
int delta_e, i;
float p, r;

delta_e = next_val - *current_val;
if (delta_e <= 0)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
else
{

p = exp(-((float)delta_e)/temperature);
r = (float) rand() / (float) RAND_MAX;
if (r < p)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
}

}

float adjustTemperature()
{

static float temperature = INITIAL_TEMPERATURE;

temperature = temperature * COOLING_RATE;
return temperature;

}

112

Appendix C

Graph Coloring C Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define MAX_EVENTS 20
#define INITIAL_TEMPERATURE 10000
#define COOLING_RATE 0.9999
#define STOP_THRESHOLD 0.0001
#define MAX_EDGES 30
#define MAX_COLORS 3

void anneal(int *current);
void copy(int *current, int *next);
void alter(int *next);
int evaluate(int *next);
void accept(int *current_val, int next_val, int *current, int *next,

float temperature);
float adjustTemperature();

int main()
{

static int current[MAX_EVENTS] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19};

srand(time(NULL));
anneal(current);
return 0;

}

void anneal(int *current)
{

float temperature;
int current_val, next_val;
int next[MAX_EVENTS];

113

temperature = INITIAL_TEMPERATURE;
current_val = RAND_MAX;
while (temperature > STOP_THRESHOLD)
{

copy(current, next);
alter(next);
next_val = evaluate(next);
accept(¤t_val, next_val, current, next, temperature);
temperature = adjustTemperature();

}
}

void copy(int *current, int *next)
{

int i;

for (i=0; i<MAX_EVENTS; i++)
{

next[i] = current[i];
}

}

void alter(int *next)
{

int i, j;

i = rand() % MAX_EVENTS;
j = rand() % MAX_COLORS;
next[i] = j;

}

int evaluate (int *next)
{

const int a[MAX_EDGES] = {15, 9, 14, 12, 15, 19, 3, 3, 3, 18, 1,
10, 3, 17, 4, 19, 17, 7, 16, 13, 15, 2, 12, 9, 1, 0, 14, 8, 14, 15};

const int b[MAX_EDGES] = {3, 19, 0, 11, 9, 15, 11, 7, 19, 16, 7,
16, 2, 16, 6, 14, 6, 13, 4, 3, 12, 1, 18, 5, 18, 6, 7, 2, 15, 18};

int i, violations;

violations = 0;
for (i=0; i<MAX_EDGES; i++)
{

if (next[a[i]] == next[b[i]])
{

violations++;
}

114

}
return violations;

}

void accept(int *current_val, int next_val, int *current, int *next,
float temperature)

{
int delta_e, i;
float p, r;

delta_e = next_val - *current_val;
if (delta_e <= 0)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
else
{

p = exp(-((float)delta_e)/temperature);
r = (float) rand() / (float) RAND_MAX;
if (r < p)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
}

}

float adjustTemperature()
{

static float temperature = INITIAL_TEMPERATURE;

temperature = temperature * COOLING_RATE;
return temperature;

}

115

Appendix D

Dependency Graph Violation C Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define MAX_EVENTS 20
#define INITIAL_TEMPERATURE 10000
#define COOLING_RATE 0.9999
#define STOP_THRESHOLD 0.0001
#define MAX_LATENCY 6
#define MAX_EDGES 30

void anneal(int *current);
void copy(int *current, int *next);
void alter(int *next);
int evaluate(int *next);
void accept(int *current_val, int next_val, int *current, int *next,

float temperature);
float adjustTemperature();

int main()
{

static int current[MAX_EVENTS] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19};

srand(time(NULL));
anneal(current);
return 0;

}

void anneal(int *current)
{

float temperature;
int current_val, next_val;
int next[MAX_EVENTS];

116

temperature = INITIAL_TEMPERATURE;
current_val = RAND_MAX;
while (temperature > STOP_THRESHOLD)
{

copy(current, next);
alter(next);
next_val = evaluate(next);
accept(¤t_val, next_val, current, next, temperature);
temperature = adjustTemperature();

}
}

void copy(int *current, int *next)
{

int i;

for (i=0; i<MAX_EVENTS; i++)
{

next[i] = current[i];
}

}

void alter(int *next)
{

int i, j;

i = rand() % MAX_EVENTS;
j = rand() % MAX_LATENCY;
next[i] = j;

}

int evaluate (int *next)
{

const int source[MAX_EDGES] = { 14, 17, 7, 1, 10, 9, 13, 8, 14,
9, 18, 15, 9, 6, 2, 11, 7, 6, 7, 6, 7, 15, 0, 5, 13, 3, 4, 0, 5, 5};

const int dest[MAX_EDGES] = {18, 19, 17, 9, 16, 15, 16, 14, 17,
11, 19, 19, 17, 8, 7, 16, 14, 19, 16, 12, 13, 16, 12, 10, 14, 12,
7, 19, 17, 15};

int i, conflicts;

conflicts = 0;
for (i=0; i<MAX_EDGES; i++)
{

if (next[source[i]] >= next[dest[i]])
{

117

conflicts = conflicts + (next[source[i]] - next[dest[i]]);
}

}
return conflicts;

}

void accept(int *current_val, int next_val, int *current, int *next,
float temperature)

{
int delta_e, i;
float p, r;

delta_e = next_val - *current_val;
if (delta_e <= 0)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
else
{

p = exp(-((float)delta_e)/temperature);
r = (float) rand() / (float) RAND_MAX;
if (r < p)
{

for (i=0; i<MAX_EVENTS; i++)
{

current[i] = next[i];
}
*current_val = next_val;

}
}

}

float adjustTemperature()
{

static float temperature = INITIAL_TEMPERATURE;

temperature = temperature * COOLING_RATE;
return temperature;

}

